EASY OR DIFFICULT?

By Albert Frank

Recently someone gave me the following problem:
On the Xth day of the Yth month of the year 1900+Z, a ship is near New York. The ship has T crew members, U propellers and V chimneys. If we add the cubic root of the age of the captain (who is a grandfather) to the product XYZTUV, the result is 698823. What are the values of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}, \mathrm{U}, \mathrm{V}$, and what is the age of the captain? We also know that only one solution is realistic.

Is this problem difficult or easy? Let's have a look at it:
The age of the captain (who is a grandfather) is a perfect cube: It can only be 64 years old.

698823-4 = 698819 .
Let's make a decomposition of 698819 into prime factors: $698819=11 \times 17 \times 37 \times$ 101.

We have four factors. Six are needed, so the two others are 1 and 1.
11 would be a too big number for propellers or chimneys, so the ship has 1 propeller and 1 chimney.

The month has to be <13, so can only be 11.
The day has to be < 32, so can only be 17.
The year (Z) has to be <100, so can only be 37 .
The remaining number 101 is the number of crew members.
We have it: $17^{\text {th }}$ November 1937, 1 propeller, 1 chimney, 101 crew members, and the captain is 64 years old.

Some will find this problem very easy, others will find it very difficult.

