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Introduction 

Some mathematical disciplines can be presented and developed in 
the context of other disciplines, for instance Boolean algebras, that 
Stone has converted in a branch of ring theory, projective geome­
tries, characterized by Birkhoff as lattices of a special type, projec­
tive, descriptive and spherical geometries, represented by Prenowitz, 
as multigroups, linear geometries and convex sets presented by Jan­
tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak 
did for geometries, in this book we present and study several ma­
thematical disciplines that use the Hyperstructure Theory. 

Since the beginning, the Hyperstructure Theory and particu­
larly the Hypergroup Theory, had applications to several domains. 
Marty, who introduced hypergroups in 1934, applied them to groups, 
algebraic functions and rational fractions. New applications to 
groups were also found among others by Eaton, Ore, Krasner, 
Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad. 
Connections with other subjects of classical pure Mathematics have 
been determined and studied: 

• Fields by Krasner, Stratigopoulos and Massouros Ch. 
• Lattices by Mittas, Comer, Konstantinidou, Serafimidis, 

Leoreanu and Calugareanu 
• Rings by Nakano, Kemprasit, Yuwaree 
• Quasigroups and Groupoids by Koskas, Corsini, Kepka, 

Drbohlav, Nemec 
• Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra­

sit, Punkla, Leoreanu 
• Ordered Structures by Prenowitz, Corsini, Chvalina 

IX 
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• Combinatorics by Comer, Tallini, Migliorato, De Salvo, 
Scafati, Gionfriddo, Scorzoni 

• Vector Spaces by Mittas 

• Topology by Mittas , Konstantinidou 

• Ternary Algebras by Bandelt and Hedlikova. 

In the 1940's, Prenowitz represented several kinds of Geometries 
(Projective, Descriptive, Spherical) as hypergroups, and later, with 
Jantosciak, founded Geometries on Join Spaces, a special hyper­
groups, which in the last decades were shown to be an useful instru­
ment in the study of several matters: graphs, hypergraphs, binary 
relations, fuzzy sets and rough sets. 

In 1978 Tallini established another link between geometries and 
a type of hypergroups he called Steiner hypergroups. 

Connections between Hyperstructures and Binary Relations in 
the most general meaning, were considered for the first time in 
1996, by Rosenberg. Afterwards they were studied also by Corsini, 
and by Corsini and Leoreanu (2000), but in special cases Hyper­
structures had been already associated with binary relations, by 
Chvalina in 1994 with order relations, by Corsini (2000) and by 
Leoreanu (2000 ) with hypergraphs (a setting more general than 
symmetric relations), and by Nieminen, Corsini, Rosenberg, with 
graphs. 

In 1996 Corsini introduced join spaces associated with Fuzzy 
Sets. These structures have been studied again by Corsini, Leo­
reanu, Tofan. The ideas of associating a hyperstructure with a 
fuzzy set and of considering algebraic structures endowed with a 
fuzzy structure, have been brought forward also by several Iranian 
scientists as Zahedi, Ameri, Borzooei, Hasankhani, Bolurian. 

It is known that Fuzzy Sets, introduced by Zadeh in [429]), are 
a powerful tool in several applied sciences (see for instance Dubois 
and Prade [137]) and so, in view of the above correspondence, hy­
perstructures could as well be. The same is true for Hyperstruc­
tures associated with Rough Sets (see Corsini [76], Leoreanu [232]). 
Rough Sets introduced by Shafer, were analyzed by Pawlak and 
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used by him and others as a mathematical tool in studying the 
Artificial Intelligence. 

There existed till now two books on general theory of Hyper­
structures (one by Corsini [437J on the basic theory of Hypergroups, 
the else by Vougiouklis [440J, mostly on representations of hyper­
groups and on H v-structures, that are hyperstructures satisfying 
conditions weaker than the classic ones) and others on particular 
sectors and applications. 

Another important book for the applications in Geometry and 
also for the clearness of the exposition is that one by Prenowitz­
Jantosciak [439J. 

Finally, we mention certain Doctoral theses, whose reading can 
be useful to deeper the knowledge both for the basics and the ap­
plications. 

Konguetsof, L. 1964 Paris University, France 
Koskas, M. 1967 Paris University, France 
Stratigopoulos, D. 1969 Louvain University, Belgium 
Mittas, J. 1969 Athens University, Greece 
Konstantinidou, M. 1977 University of Thessaloniki, Greece 
Sureau, Y. 1980 Universite de Clermont II, France 
Vougiouklis, T. 1980 Democritus University, Xanthi, 

Greece 
Ioulidis, S. 1981 University of Thessaloniki, Greece 
Serafimidis, Ch. 1983 University of Thessaloniki, 

Greece 
Freni, D. 1985 Universite de Clermont II, France 
Massouros, Ch. 1988 Technical University of Athens, 

Greece 
Spartalis, St. 1990 Democritus University, Xanthi, 

Greece 
Yuwaree, Punkla 1991 University of Chulalongkorn, 

Bangkok, Thailand 
Massouros, G. 1993 Technical University of Athens, 

Greece 
Gutan, C. 1994 Universite de Clermont II, France 
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Dramalidis, A. 1996 Democritus University, Greece 
Yatras, C. 1996 Democritus University, Greece 
Hasankhani, A. 1997 Shahid Bahonar Univ. of Kerman, Iran 
Ameri, R. 1997 Shahid Bahonar Univ. of Kerman, Iran 
Moueka, J. 1997 Military University of the Ground Forces 

Vykov / Masaryk University, Brno 
Leoreanu, V. 1998 "Babe§ Bolyai" University, Cluj-Napoca, 

Romania 
Hort, D. 1999 Faculty of Education, Masaryk 

University, Brno 
Borzooei, R.A. 2000 Shahid Bahonar Univ. of Kerman, Iran 

By this book we present some of the numerous applications of 
hyperstructures, especially those from the last fifteen years, to the 
subjects: 

1. Some topics of Geometry 
2. Hypergraphs and Graphs 
3. Binary Relations 
4. Lattices 
5. Fuzzy Sets and Rough Sets 
6. Automata 
7. Cryptography 
8. Codes 
9. Median Algebras, Relation Algebras, C-Algebras 

10. Artificial Intelligence 
11. Probabilities 

This work, a survey of the most recent applications of Hyper­
structure Theory, is based on many papers, some of which contain 
more detailed presentation. We hope this book will get a progress 
of science through a study in depth of these applications. 

ACKNOWLEDGEMENTS. We warmly thank Professor Jeno 
Szep for encouraging us to write this book. Our thanks to Profes­
sors James Jantosciak, Ivo Rosenberg and Thomas Vougiouklis for 
careful reading of the manuscript and for their precious suggestions. 
We thank to lady Elena Mocanu for her patience and disponibility 
in the Latex processing of the manuscript. 



Basic notions and results 
on Hyperstructure Theory 

The most important notions and results, obtained on Hyperstruc­
ture Theory, are presented here. For more details, see [437J. 

Let H be a non-empty set and denoted by P*(H) the set of 
all non-empty subsets of H. 

1. Definition. A n-hyperoperation on H is a map f : Hn --+ 

--+ P*(H). The number n is called the arity of f. 

2. Definition. A set H, endowed with a family r of hyperopera­
tions, is called a hyperstructure (or a multivalued algebra). 

3. Definition. If r is a singleton, that is r = {J} where the arity 
of f is 2, then the hyperstructure is called a hypergroupoid. 

Usually, the hyperoperation is denoted by "0" and the image of 
the pair (a, b) of H2 is denoted by aob and called the hyperproduct 
of a and b. 

If A and Bare non-empty subsets of H, then A 0 B = U aob. 

4. Definition. 

aEA 
bEE 

(i) A semihypergroup is a hypergroupoid (H, 0) such that 
Ii (a, b, c) E H 3 , (aob)oc = ao(boc). 

(ii) A quasihypergroup is a hypergroupoid (H, 0) which satisfies 
the reproductive law. 

1 



2 PIERGIULIO CORSINI and VIOLETA LEOREANU 

( *) Va E H, H oa = aoH = H. 
(iii) A hypergroup is a semihypergroup which is also a quasihyper­

group. 

5. Definition. Let (H,o) be a hypergroupoid. An element e E H 
is called an identity or unit if 

Va E H, a E aoe n eoa. 

6. Definition. Let (H, 0) be a hypergroup, endowed with at least 
an identity. An element a' E H is called an inverse of a E H if 
there is an identity e E H, such that 

e E aoa' n a'oa. 

7. Remark. Sometimes, more general structures are considered, 
for instance the Wall-hypergroup (see [423]) of dimension n, which 
is a non-empty set H, endowed with a hyperoperation "0", such 
that for any (a, b) E H2, the hyperproduct aob is a set of n elements 
of H, not necessarily distinct elements. Moreover, the associativity 
law is valid, there is at least one identity and any element has an 
inverse in a Wall hypergroup. 

8. Definition. We say that two binary hyperoperations < 01 >, 
< 02 > on the same set H are mutually associative (m.a.) if 
V (x, Y, z) E H3, we have 

(X01Y)02Z=X01(Y02Z) and 

(X02Y) 01 Z = X02 (Y01 z). 

We also say that the pair ((H, 01)' (H, 02)) is m.a. 

The mutual associativity of two hyperoperations has been in­
troduced by P. Corsini. In [73], he has started to investigate the 
problem of determining pairs of finite quasihypergroups which are 
mutually associative (m.a.). 
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9. Definition. A semihypergroup (H, 0) is called simplifiable on 
the left if: V (x, a, b) E H 3 , xoa n xob 1= 0 ===:> a = b. 

Similarly, we can define the simplifiability on the right. 
F. Marty [248] proved that any hypergroup simplifiable on the 

left (or on the right) is a group. Later, M. Koskas [213] gave a 
simplier proof for the same result. 

In [227] it is proved the following: 

10. Theorem. Let (H,o) be a semihypergroup such that Vt E H, 
toH = Hand 3so E H, Hoso = H. 

(i) If H is simplifiable on the left, then H is a group; 

(ii) If H is simplifiable on the right, then H is a group. 

11. Definition 
H is said to be of type C on the right (see [383]) if 3e E H, 

called a scalar identity on the right, such that: 
1) V x E H, xoe = x 
2) V (x, y, z) E H 3 , xoy n xoz 1= 0 ===:> eoy = eoz. 

Relation f3 and quotient hypergroupoids 

Let (H, 0) be a hypergroupoid and let p be an equivalence relation 
onH. 

12. Definition. We say that p is regular on the right if the fol­
lowing implication holds: 

apb ===:> VuE H, V x E aou, 3y E bou : xpy and 
V fj E bou, 3x E aou : xpf} 

Similarly, the regularity on the left can be defined . 
We say that p is regular if it is regular on the right and on the left. 

13. Definition. We say that p is strongly regular on the right if 
the following implication holds: 

apb ===:> Vu E H, Vx E aou, Vy E bou: xpy. 
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Similarly, the strong regularity on the left can be defined. 
We say that p is strongly regular if it is strongly regular on the 

right and the left. 

14. Definition. Let (H, 0) be a hypergroupoid. We define the 
relation (3 on H, as follows: 

n 

a(3b {=:=? 3n E IN*, 3(Xl,X2, ... ,xn ) E H n : a E IT Xi::1 b. 
i=1 

Notice that (3 is a reflexive and a symmetric relation on H, but 
generally, not a transitive one. 

Let us denote by (3* the transitive closure of (3. 
The following results hold: 

15. Theorem. If (H, 0) is a hypergroupoid, then (3* is the smallest 
equivalence strongly regular on H, with respect to the inclusion. 

16. Theorem. If H is a hypergroup, then (3* = (3. 

17. Notation. \if (a, b) E H2, alb = {x I a E xob} and b\a = {y I 
a E boy}. 

18. Definition. Let (H, 0) and (K, *) be hypergroupoids and 
f : H ---+ K. We say that: 

(i) f is a homomorphism if \if (a, b) E H2, f(a 0 b) C f(a) * f(b); 
(ii) f is a good homomorphism if \if (a, b) E H2, 

f(aob) = f(a) * f(b); 
(iii) the homomorphism f is strong on the left if 

f(c) E f(a) * f(b) ==} 3a' E H : f(a) = f(a') and c E a'ob. 

Similarly, we can define a homomorphism, which is strong on the 
right. 

If a homomorphism f is strong on the right and on the left, we 
say that f is a strong homomorphism. 
(iv) f is a very good homomorphism if f is a good homomor­

phism and moreover, \if(x,y) E H2, f(xlY) = f(x)lf(y) and 
f(x\y) = f(x)\f(y). 
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Now, some basic results about quotient hypergroupoids are 
presented .. 

19. Theorem. Let (H, 0) be a semihypergroup and p an equiva­
lence relation on H. 

(i) If p is regular, then Hlp is a semihypergroup, with respect to 
the following hyperopemtion: 

V (x, iJ) E (Hlp)2, x ® iJ = {z I Z E xoy}. 

(ii) Conversely, if the hyperopemtion "®" is well-defined on Hlp, 
then p is regular. 

(iii) In the above-mentioned hypothesis, the canonical projection 
7r:H-+Hlp is a good epimorphism and if (H,o) is a hyper­
group, then (Hlp, ®) is also a hypergroup, denoted by Hlp. 

20. Theorem. Let (H,o) be a semihypergroup and p a strongly 
regular equivalence relation on H. Then: 

(i) Hlp is a semigroup; 
(ii) if H is a hypergroup, then Hlp is a group; 

(iii) if S is a semigroup and f : H --+ S is a homomorphism, 
then the equivalence relation R associated with f, as follows 
aRb <===? f(a) = f(b), is strongly regular. 

21. Corollary. If (H, 0) is a hypergroup, then HI f3 is a group. 
Moreover, /3 is the smallest equivalence relation p on H, such 

that Hlp is a group. 

Complete parts, suhhypergroups and the heart 
of hypergroup 

22. Definition. Let (H,o) be a semihypergroup and A a non­
empty subset of H. We say that A is a complete part of H if the 
following implication holds: 

n n 

Vn E IN*, V(Xl' ... ,xn ) E un, II Xi n A # 0 ==> II Xi C A. 
i=1 i=1 
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23. Definition. If (H, 0) is a semihypergroup and A c H, A#- 0, 
then the complete closure of A in H is the intersection of all the 
complete parts of H, which contain A. It will be denoted by C(A). 

Some basic results concerning C(A) : 

24. Theorem. Let (H, 0) be a semihypergroup and A c H, A#- 0. 
We consider Ko(A) = A andVn E IN, 

K n+1(A) = {aEH 13pElN*, 3(Xb ... ,xp)EHP: aEg Xi and 

il Xi n Kn(A) #- 0 } 

Let K(A) = U Kn(A). Then C(A) = K(A). 
nEIN 

Let (H,o) be a semihypergroup. 

25. Theorem. 

(i) The relation K defined as follows 

aKb ¢=> X E C({y}) 

is an equivalence relation on H. 

(ii) V(a,b) E H2, we have aKb ¢=> a{3*b. 

26. Theorem. If A is a non-empty subset of a semihypergroup 
(H,o), thenC(A) = UC(a). 

aEA 

The following theorem characterizes the semihypergroups for 
which the relation {3 is transitive. 

27. Theorem. ([152] and Th.47, Ch.3) Let H be a semihyper­
group. The relation {3 is transitive in H if and only if V X E H, 
C(x) = Kl(X). 
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Let 'PH : H ~ H/{3 be the canonical projection. 

28. Definition. The heart of a hypergroup H is WH = {x E H I 
'PH(X) = I}, where 1 is the identity of the group H/{3. 

29. Theorem. If A is a non-empty subset of a hypergroup H, 
then C(A) = A OWH = wHoA. 

30. Corollary. If A and B are non-empty subsets of a hypergroup 
(H,o), such that one of A and B is complete, then AoB and BoA 
are complete parts. 

31. Definition. Let (H, 0) be a hypergroupoid and A a non-empty 
subset of H. We say that 

(i) A is reflexive in H if 'v' (x, y) E H2, from xoy n A#0 it follows 
yoxnA#0; 

(ii) A is invariant (or norman in H if 'Ix E H, we have xoA = 
= Aox. 

(iii) A is invertible on the left in H if'v'(x,y) E H2, the following 
implication holds: y E Aox ==> x E Aoy. 

Similarly, we define the invertibility on the right. We say that A is 
invertible if it is invertible on the right and on the left. 

32. Definition. Let (H, 0) be a hypergroupoid and K a non­
empty subset of H. 

K is called a subhypergroupoid of H if K oK c K. A subhyper­
groupoid 

K of H is called a subhypergroup of H, if (K, 0) is a hypergroup. 

Now, we define some important types of suhhypergroups: 

33. Definition. Let (H, 0) be a hypergroup and K a subhyper­
group of it. We say that: 
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(i) K is closed on the left in H if Va E H, V(x,y) E K2, from 
x E aoy follows a E K. 

Similarly, we can define the notion closed on the right. 
K is closed in H if it is closed on the right and on the left. 

(ii) K is ultraclosed on the left in H if V x E H, 
Koxn (H - K)ox -=f. 0. 

Similarly, we can define the notion ultraclosed on the right. 
K is ultraclosed if it is ultraclosed on the right and on the left. 

We characterize ultraclosed subhypergroups: 

34. Theorem. Let (H, 0) be a hypergroup, Ip the set of partial 
identities, that is Ip = {e E H I 3x E H : x E eox U xoe}. 

Let K be a subhypergroup of H. 
K is ultraclosed if and only if it is closed and contains Ip. 

35. Definition. Let (H, 0) be a hypergroup and KI, K2 subhyper­
groups of H. We say that K2 is K1-conjugable if the following 
conditions hold: 

1) K = Kl n K2 -=f. 0; 
2) K2 is closed in H; 

3) Vx E KI, 3x' E Kl such that x'ox C K. 

The following characterization holds: 

36. Theorem. A subhypergroup K of a hypergroup H 
is a complete part of H if and only if K is H -conjugable. 

We state some connections between complete parts, invertible, 
closed, ultraclosed subhypergroups: 

37. Theorem. Let (H, 0) be a hypergroup and K a subhypergroup 
of H. The following statements hold: 

(i) if K is a complete part of H, then K is ultraclosed in H; 
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(ii) if K is ultraclosed in H, then K is invertible in H; 

(iii) if K is invertible on the right (on the left)in H, then K is 
closed on the left (on the right) in H. 

38. Theorem. If K is a subhypergroup and a complete part of a 
hypergroup H, then K is invariant in H if and only if it is reflexive 
in H. 

39. Remark. In [437, pp.52-53j examples are given of non­
closed subhypergroups, ultraclosed but not complete parts sub­
hypergroups, invertible but not ultraclosed subhypergroups, closed 
but not invertible subhypergroups. 

40. Theorem. The heart of a hypergroup H is the intersection of 
all subhypergroups of H, which are complete pans. 

41. Definition. The intersection of all ultraclosed subhypergroups 
of a hypergroup H is called nucleus of H. 

By C.u. it is denoted the class of hypergroups, whose ultra­
closed subhypergroups are all complete parts. 

Several important classes of hypergroups 

I. Regular hypergroups, complete hyper groups 
and canonical hypergroups. 

42. Definition. A hypergroup H is regular if it has at least one 
identity and each element has at least one inverse. 

A regular hypergroup (H, 0) is called reversible if for any 
(x, y, z) E H 3 , it satisfies the following conditions: 

1) if y E aox, then there exists an inverse a' of a, such that 
x E a'oy; 

2) if Y E xoa, then there exists an inverse a" of a, such that 
x E yoa". 
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If H is regular, we denote by E the set of identities of Hand 
for any a E H, by i(a) the set of inverses of a. 

43. Theorem. If H is a regular reversible hypergroup and {AihEI 
is a family of its invertible subhypergroups, then A = nAi is an 
invertible subhypergroup. iEI 

In [437, p. 63] it is presented an example of regular hypergroup, 
which is not reversible. 

44. Definition. A semihypergroup(H, 0) is called complete if 

V (x, y) E H2, C(xoy) = xoy, 

where C was defined in 23. 
Some results about the complete hypergroups: 

45. Theorem. A semihypergroup H is complete if H = U As, 
sES 

where S and As satisfy the conditions: 
1) (S,o) is a semigroup; 
2) '11(8, t) E S2, 8 i- t, we have As n At = 0; 
3) if (a, b) E AsxAt, then aob = A st . 

46. Theorem. If H is a complete hypergroup, then 
1) WH is the set of identities of Hand 
2) H is a regular reversible hypergroup. 

47. Definition. A hypergroup H is fiat if for any subhypergroup 
K of H, the following equality holds: WK = WH n K. 

48. Theorem. Every complete hypergroup is fiat. 

49. Theorem. Let H be a regular reversible hype rgro up. If A is a 
closed subhypergroup, then A is invertible. 

50. Theorem. Let f : H -t H' be a very good epimorphism of 
hypergroups and let K be a subhypergroup and a complete part of 
H. Then f(K) is a complete part and a subhypergroup of H'. 
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51. Theorem. If f : H ~ H' is a very good epimorphism between 
hypergroups, then f(wH) = WH'· 

52. Theorem. If H and H' are complete hypergroups and 
f : H ~ H' is a good homomorphism, then f is very good. 

53. Definition. We say that a hypergroup H is canonical if 
1) it is commutative 
2) it has a scalar identity 
3) every element has a unique inverse 
4) it is reversible. 

54. Remark. Not all subhypergroups of a canonical hypergroup 
are canonical (see Th. 200 [437]). 

Let (H, +) be a canonical hypergroup and x E H. For any 
n E ~, we define 

~+x-+:.···+~ if n > 0 
n times 

nx = 0 if n = 0 

(-x) + ... + (-x) , if n < 0, 
, ... ' 

(-n) times 

where V x E H, we denote by "-x" the inverse of x. 
We can verify that 

if mn 2: 0 
mx+nx= { 

(m+n)x, 

(m + n)x + min{lml, Inl} . (x - x), if mn < O. 

55. Definition. Let (H, +) be a canonical hypergroup and x E H. 
We say that the order of x is infinite (o( x) = 00) if V (h, k) E ~2, 
where h =I- 0, we have 0 ~ hx + k(x - x). 

56. Theorem. Let (H, +) be a canonical hypergroup and x E H. 
Then o( x) = 00 if and only if V (m, n) E ~2, m =I- n we have 
mxnnx = 0. 
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57. Definition. Let (H, +) be a canonical hypergroup. Let 
us suppose that there exists (m, n) E ~xlN, m =f 0, such that 
OEmx+n{x-x). 

Let h = min {r E IN* I ::In E IN : 0 E rx + n{ x - x)}. The 
number h is called the principal order of x. 

58. Theorem. Let (H, +) be a canonical hypergroup and x E H. 
We have 0 E mx + n'{x - x) if and only if ord x divides m. 

59. Definition. Let h divide m and q = min{ s E IN* I mx + 
+s{x - x) 3 O}. The couple (h, q) is called the order of x. 

60. Definition. A canonical hypergroup (H, +) is called strongly 
canonical if it satisfies the following conditions: 

1) V{x,a)EH2, xEx+a===}x=x+a; 

2) (x + y) n (z + w) =f 0 ===} x + y c z + w or z + we x + y. 

II. Join spaces. 

61. Definition. A commutative hypergroup (H, 0) is called a join 
space if V (a, b, c, d) E H 4 , the following implication holds: 

alb n cl d =1= 0 ===} aod n boc =f 0. 

If A and B are subsets of a hypergroup H, we denote by AlB the 
set U alb. 

<lEA 
bEB 

62. Theorem. A commutative hypergroup is canonical if and only 
if it is a join space with a scalar identity. 

63. Theorem. A is a closed subhypergroup of a join space H if 
and only if AlA = A. 

64. Theorem. Let A, B, C, D be non-empty subsets of a join 
space (H, 0). We have: 
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1) if A c Band C C D, then A/C c B/D; 

2) An B/C # 0 if and only if A 0 C n B # 0; 

3) A/(B 0 C) = (A/ B)/G; 

4) A/(B/C) c (A 0 C)/B; 

5) A 0 (B/G) c (A 0 B)/G; 

6) B c A/(A/ B). 

65. Definition. A join space H is called geometric if V x E H, we 
have xox = {x} = x/x. 

66. Definition. For a closed subhypergroup N of join space Hand 
(x,y) E H2, we write xJNy if xoNnyoN # 0. 

67. Theorem. The relation I N is an equivalence relation. The 
equivalence class of a E H is (a)N = (aoN)/N = N/(N/a). In 
particular, VxEN, (X)N = N. 

68. Theorem. If H is a join space and N is a closed subhyper­
group of H, then the equivalence relation J N is regular and the 
quotient H / J N is canonical. 

69. Theorem. ([312]) The following statements (concerning the 
canonical hyper group (H / J N, @)) hold: 

1) the identity element is N and V n E N, we have (n) N = N; 

2) (a')N is the inverse of (a)N if and only if N n a 0 a' # 0; 

3) if (a')N is the inverse of (a)N, then (a')N = N/a. 

If AI,A2, ... ,An are subsets of a hypergroup, we denote by 
n 

< AI, ... , An> the closed subhypergroup generated by UAi . 

i=l 
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70. Theorem. If H is a join space and A is a subhypergroup of 
H, then A is ultraclosed if and only if it is a complete part of H. 

Let (H, 0) be a hypergroup. Let us denote 

Ip = {e E H I 3x E H : x E eox U xoe}. 

For n E ]N*, set 

We obtain: 

I; = Ip 0 .•. 0 Ip . 
~ 

n times 

71. Theorem. Let (H, 0) be a join space. Then 

WH = U (1;/1;). 
nElN* 

72. Definition. Let H be a join space. If H has a scalar identity 
e, we set E = {e}, otherwise E = 0. 

Furthermore, we define 

<l0[> = E and if A E P*(H), <lA[> = < A > . 

73. Definition. A join space H is called an exchange space if it 
satisfies the following conditions: 

(I) if a E <lb[>, a ~ E, then <la[> = <lb[>; 

(II) if c E <la, b[> and crt. <lb[>, then <Ie, b[> = <la, b [> . 

For an exchange space, < > will mean <l [>. 

74. Theorem. If A and B are non-empty subsets of a join space, 
such that < A > n < B > i- 0, then < A, B > = < A > / < B > . 

75. Theorem. Let H be a join space with a scalar identity e. 
Then H satisfies (I) if and only if it satisfies (II). 
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76. Definition. Let A be a subset of a join space H. A is called 
independent if Va E A, we have a tt< A - {a} > . 

77. Definition. A subset A of a closed subhypergroup S of a join 
space H is called a basis of S if it is independent and furthermore 
< A >= S. 

78. Theorem. Let A be a subset of an exchange space H, and 
let (x,y) E H2. ffy E< A,x > and y tt< A >, then < A,x >= 
=< A,y >. 

79. Theorem. All complete commutative hypergroups are join 
spaces, but there are commutative regular reversible hypergroups, 
which are not join spaces. 

III. Quasi-canonical Hypergroups. Cogroups. 

Let (H, 0) be a hypergroup and x E H. 
We denote by ii(x) the set of x' E H such that e E x'ox} for a 

left identity e and by ir(x) the set x" E H such that e E xox"} for 
a right identitye. 

We also denote by i(x) the set of all inverses of x. 

80. Definition. A hypergroup H is called feebly quasi-canonical 
if it is regular, reversible and satisfies the condition: 

V(x,a)EH2,V{u,v} C ii(x),V{w,z} C ir(x), uoa=voa,aow=aoz. 

If H is also commutative, we say that H is feebly canonical. 
We denote by F.Q.C. and by F.C. the classes of feebly quasi­

canonical, respectively feebly canonical hypergroups. 

81. Theorem. Let HE F.Q.C. and K be a subhypergroup of H. 
Then K is ultraclosed if and only if it is a complete part of H. 

82. Theorem. Let HE F.Q.C. Then the following conditions are 
equivalent: 

a) VxEH, cardi(x)=l; 
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b) H has exactly one identity, which is a scalar. 

83. Definition. A hypergroup in F.Q.C., satisfying the equivalent 
conditions a) or b) of the above theorem, is called quasi-canonical 
(or a polygroup). 

We denote by Q.C. the class of quasi-canonical hypergroups. 
Clearly, the canonical hypergroups are the commutative quasi­

canonical hypergroups. 

Let (H, 0) be a feebly quasi-canonical hypergroup and let R 
be the following relation on H: xRy -<==} 3z E H : {x, y} C i{z). 

84. Theorem. 

(i) 
(ii) 

The relation R is a regular equivalence relation. 

The quotient H / R is a hypergroup, with respect to the hyper­
operation 

X Q9 Y = {z I z E xoy}. 

Moreover, the canonical projection p : H ---t H / R is a good epimor­
phism. 

85. Theorem. If HE F.Q.C., then H/R is quasi-canonical. 

86. Theorem. The following conditions are equivalent for 
HE F.Q.C. 

(i) H is complete 

(ii) WH is the set of identities of H 

(iii) H/R is a group. 

87. Definition. A weak left cogroup is a regular reversible hyper­
group (H,o), endowed with a left scalar identity "e" and satisfying 
xoy n zoy i= 0 ==} x E zoe. 

A weak left cogroup is called a left cogroup if it also satisfies 
'if (x, y, z) E H 3 , card(xoy) = card{xoz). 
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Let (H, 0) be a weak left cogroup with a left scalar identity e. 
The following relation R defined on H: xRy {=::> x E yoe is an 
equivalence relation. 

88. Theorem. The quotient H / R endowed with the structure 
aoe (8) boe = {voe I v E aob} is a quasi-canonical hypergroup. 

89. Theorem. Let H be a subhypergroup of a cogroup C. Then 
(i) H is an invertible part of H and a subcogroup of C; 

(ii) if card C < Xo, then the order of H divides the order of C. 

90. Definition. A partial hyperalgebraic structure < H, 0, I, -1 > 
is called a quasi-canonical hyper groupoid if "0" is a partial binary 
hyperoperation on H, i.e. a map from H2 into P(H), I ~ Hand 
-1 is a unary operation on H, such that the following conditions 
hold for any (x, y, z) E H3 : 

1) (xoy)oz = xo(yoz), which should be interpreted as follows: if 
either side is non-empty, then both sides are non-empty and 
the sets are equal. 

2) xoI = lox = x; 
3) x E yoz -{::=? Y E xoz- l {=::> z E y-10x. 

Quasi-canonical hypergroupoids are also called polygroupoids. 
They were introduced by S. Comer and correspond to the atom 
structures of systems of relations. Comer generalized polygroupoids 
to partial multi-valued loops. 

IV. Cyclic hypergroups. 

91. Definition. A hypergroup H is called cyclic with a generator 
x if 'PH (H) is a cyclic group generated from 'PH(X). 

92. Definition. An element x of a hypergroup H is called periodic 
of period p(x) = n if xn C WH and n = min{k E lN I xk C WH}. 

93. Definition. A semihypergroup H is called s-cyclic with s­
generator hE H if for all x E H we have x E hn forsorne n E IN. 
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94. Theorem. If H is a cyclic and complete hypergroup, then it 
is commutative. 

95. Definition. If H is an s-cyclic semihypergroup with s­
generator h, we call the cyclicity of a E H the integer 

m = min{q E]N* - {I} I a E hq}. 

We write cycl(a) = m. 

96. Theorem. A cyclic and complete semihypergroupis a Jom 
space. 

97. Theorem. If H is a cyclic and complete hypergroup and h is 
r 

its s-generator, such that cycl(h) = r, then H = E9 ht. 
t=2 

98. Theorem. Every hypergroup < H,o > is embeddable in a 
cyclic hypergroup < K, Q9 >, with WK = H. 

v. KH-hypergroups. 

99. Definition. Let < H, 0> be a hypergroupoid and let {A(x) }xEH 

be a family of pairwise disjoint non-empty sets.Let KH = U A(x) 
xEH 

and let us define 

Va E K H , g(a) = x ~ a E A(x). 

We define in KH the hyperoperation: 

V (a, b) E K't, aob = U A(z). 
zEg(a)og(b) 

100. Theorem. 
1) (H, 0) is a semihypergroup if and only if < K H, 0 > is a 

semihypergroup; 
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2) (H, 0) is a hypergroup if and only if < K H, 0 > is a hyper­
group. 

101. Notation. For any P E P*(H), set K(P) = U A(x). 
xEP 

102. Theorem. 
1) E(KH) = K(EH); 
2) Va E K H, i(a) = K(i(g(a))) = g-l(i(g(a))). 

103. Theorem. 
1) If P is a complete part of < H,o >, then K(P) is a complete 

part of < K H, 0 >. 
2) If P is a non-empty part of a semi-hypergroup H, then P is 

a subhypergroup of H if and only if K(P) is a subhypergroup 
ofKH. 

104. Theorem. V (x, y) E H2, V (u, v) E A(x)xA(y), if U/3KHv 
then x/3HY. 

105. Theorem. If H is a hypergroup, then WKH = K(WH). 

106. Theorem. If H is a hypergroup, then: 
1) < K H, 0 > is regular if and only if (H, 0) is regular; 
2) < K H, 0 > is reversible if and only if (H, 0) is reversible; 
3) < KH,D > is feebly quasi-canonical if and only if (H, 0) is 

feebly quasi-canonical. 

Hyperrings, hypermodules and vector 
hyperspaces 

107. Definition. A (Krasner) hyperring is a hyperstructure 
< A,+, -,0> where: 

1) (A, +) is a canonical hypergroup; 
2) (A, -) is a semigroup endowed with a two-sided absorbing 

element 0; 
3) the product distributes from both sides over the sum. 
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108. Definition. A hyper field is a Krasner hyperring (K, +,·,0), 
such that (K - {O},·) is a group. 

109. Definition. Let x be an element of a hyperring A. If 
o(x) = 00, we say that the characteristic of x is zero and we set: 
X(x) = O. If o(x) =1= 00, we set X(x) = h, where h is the principal 
order of x in the canonical hypergroup < A, + > . 

110. Definition. We call the characteristic X(A) of A the least 
common multiple (R.c.m.) of X(x) for x E A if it exists and is =1= 0, 
otherwise we set X(A) = O. 

Ill. Remark. If y = ax, then X(y) divides X(x). 

112. Definition. If < A, +,. > is a hyperring and B is a non­
empty subset of A, we say that < B, +,. > is a subhyperring of A 
if: 

(B, +) is a canonical subhypergroup of < A, + > and (B,·) 
is a subsemigroup of (A, .). 

We say that B is a left hyperideal of A if (B, +) is a canonical 
subhypergroup of A and A . B c B. 

Similarly, we can define the notion of right hyperideal and of 
the two-sided hyperideal of A. 

113. Proposition. The heart WA of < A, + > is a hyperideal of 
<A;+,·> . 

114. Proposition. Let A and B be respectively a hyperring and a 
two-sided hyperideal of A. If in the quotient AlB = (A, + )/(B, +) 
we set (x + B)(y + B) = xy + B, then the structure (AlB, +,.) is 
a hyperring. 

115. Definition. Let A be a hyperring. We say that < M, +, 0 > 
is a right A -hypermodule if 

1) (M, +) is a canonical hypergroup; 
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2) 0 is a scalar single-valued operation, that is a function which 
associates with any pair (x, a) E MxA an element xoa E M, 
such that V (x, y) E M2, V (a, b) E A2, the following conditions 
hold: 

1°. (x + y)oa = xoa + yoa; 
2°. xo(a + b) = xoa + xob; 
3°. xo(a· b) = (xoa)ob; 
4°. xoO = O. 

If A is endowed with a unit 1, M is called unitary if V x E M, 
xol = x. 

116. Definition. If K is a hyperskewfield, then a right unitary 
hypermodule < V, +, 0 > is called K -vectorial hyperspace. 

117. Definition. If M and M' are right A-hypermodules (where 
A is a hyperring) and f : M ---. M' is a map, we say that f is 
a homomorphism if: V(x,y) E M2, f(x + y) = f(x) + fey) and 
V(x,a) E MxA, f(xoa) = f(x)oa. 

118. Proposition. Let M be a right A hypermodule and N a 
subhypermodule of M (that is a canonical subhypergroup such that 
Va E A, Noa eN). If we set V(x,y) E M2, xRy -¢::=> x + N = 
= y + N and we define on the quotient MjR, V(x,y) E M2, 
(x+M)+(y+N)={v+N I vEx+y}, Va E A, (x+N)oa = xoa+N, 
then we obtain on M j R (denoted by M j N) a structure of right hy­
permodule. 

Hv-structures 

One of the topics of great interest, in the last years, is the study 
of weak hyperstructures, so-called Hv-structures. The class of Hv-
structures is the largest class of algebraic hyperstructures. 

These structures satisfy weak axioms, where the non-empty 
intersection replaces the equality. 

This topic was introduced in 1990 by Vougiouklis ([413]) and 
studied by himself and then by R. Migliorato and their students. R. 
Ameri has introduced the categories of Hv-groups and Hv-modules. 
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Vougiouklis abbreviated the weak associativity by WASS and 
the weak commutativity by cow. 

119. Definition. A hypergroupoid (H,·) is called an Hv-group if 
the weak associativity is satisfied, that is: 

(a) V(x,y,Z)EH3 , x·(y·z)n(x·y)·z=rf0 

and also the reproductive axiom holds: 

v x E H, X· H = H . x = H. 

A hypergroupoid which satisfies only (a) is called Hv-semigroup. 

120. Definition. Let (HI,·) and H2 , *) be two Hv-groups. A map 
f : Hi -t H2 is called a weak homomorphism if: 

V(X,y)EH;, f(x·y)nf(x)*f(y)=rf0. 

Let (H,·) be an Hv-group. The relation /3* is the smallest 
equivalence relation on H, such that the quotient H //3* is a group. 

It is called the fundamental group and /3* is called the funda­
mental equivalence relation on H. 

The relation (3 is defined on an Hv-group in the same way as 
in a hypergroup. 

Finally (3* is the transitive closure of /3. 

121. Definition. An Hv-group (H, 0) is called an Hb-groUP if 
there exists a group operation "." on H, such that V(x,y) E H2, 
we have x . y E x 0 y. 

122. Definition. An Hv-ring is a hyperstructure (R, +, .), where 
both hyperoperations "+" and"·" are weakly associative, "." weakly 
distributed over" +" from both sides and "+" is reproductive. 

Let U be the set of all finite polynomials of elements of R 
over IN. 
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Let us define the relation 1 on R, as follows: 

XIY {=:::} 3u E U, such that {x,y} ~ u. 

Let 1* denote the transitive closure of I. 
Note that 1* is the smallest equivalence relation on R such that 

the quotient R/J* is a ring. 
The relation 1* is called the fundamental relation of R and 
is the main tool for the study of Hv-rings. 

123. Definition. The Hv-ring (R, +,.) is called an Hv-field if the 
ring R/J* is a field. 

Let us denote by w* the kernel of the canonical map 

1r: R-+ R/J*. 

124. Definition. An Hv-ring (R, +,.) is called a reproductive 
Hv-jield if the following condition holds: 

\Ix E R -w*, X· (R- w*) = (R -w*)· x = R-w*. 

The importance of the reproductivity with respect to the hyper­
operation"·" consists in the representations in the diagonal form. 

125. Definition. A matrix whose entries are elements of an Hv-

ring is called Hv-matrix. 

Hv-matrices have been especially studied by Vougiouklis. 

126. Definition. A cow group (M, +) is called a left Hv-module 
over an Hv-ring R, if for every a E R there is a map (a, x) ~ ax 
from RxM into P*(M) such that \I (a, b) E R2, \I(x,y) E M2, we 
have 

a(x + y) n (ax + ay) =10; 
(a + b)x n (ax + bx) =10 
(ab)x n a(bx) =10. 
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The fundamental relation c* in Mover R is the smallest equivalence 
relation on M, such that Mjc* is a module over the ring R/!*. 

c* is constructed as follows: 
Let (M, +) be an Hv-module over an Hv-ring R. Let U be the 

set of all expressions consisting of finite hyperoperations either on 
Rand M or the external hyperoperation applied on finite sets of 
elements of R and M. 

Define a binary relation c on M by: 

Xcy {:=} 3u E U, such that {x,y} C u 

and denote by c* the transitive closure of the relation c. 
In the fundamental module (M j c*, $, 0) over R/!*, the hyper­

operations $ and 0 are defined as follows: 

V(X,y)EM2 , c*(x)$c*(y) =c*(z) for any zEc*(x)+c*(y) 
Va E R, V xEM, ,*(a) 0 c*(x) = c*(z), for any zE,*(a) . c*(x). 

Definition 127. An Hv-semigroup (H,·) is called hjv-group if the 
quotient H j {3* is a group. 

Remark 128. In a similar way as above, the hjv-rings, hjv-fields, 
hjv-modulus, hjv-vector spaces are defined. These structures has 
been studied by T. Vougiouklis. 



Chapter 1 

Some topics of Geometry 

• Several branches of geometry can be treated as certain 
kinds of hypergroups, known as join spaces. Introduced by 
W. Prenowitz and studied afterwards by him together with 
J. Jantosciak, the concept of a join space is "sufficiently 
general to cover the theories of ordered and partially or­
dered linear, spherical and projective geometries, as well as 

abelian groups" . 
• If we consider a spherical geometry and identify antipodal 
points, we obtain a projective geometry. This construction 
can be described in the context of join spaces as follows: 

Let J be the set of points of a spherical join space and 
for any a E J, let a = {a,a- I }. Let J = {a I a E J}. We 
define on J the following hyperoperation: 

a 0 b = {x I x Ea· b}, 
where "." is the hyperoperation of the spherical join space. 

Theorem. (see [168)) (], 0) is a projective join space, such 
that Va E J, a 0 a = a/a = {e, a}, where e is the identity. 

The results of §1, §2, §3 of this chapter are due to W. Prenowitz 
and W. Prenowitz-J. Jantosciak. Using the notion of join space, 
they have rebuilt several branches of geometry. 

We start by presenting some important and interesting exam­
ples of join spaces, suggested by three types of geometris: 

25 
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1) Affine join spaces over ordered fields 

Let L be a vector space over an ordered field K. We define the 
following hyperoperation on L: 

V(x,y)EL2, x o y={ax+.8yla>O, .8>0, a+.8=l} 

Then (L, 0) is a join space, called the affine join space over K. 

2) Ray spaces over ordered fields 

Let L be a vector space over an ordered field K. Given x E L, the 
ray x is the set {Ax I ). > O}. Let R be the family ofrays of L. Let 
us define on R the following hyperoperation® : 

v (x, iJ) E R2, x®iJ is the set of rays determined by the ele­
ments of xoy, where "0" is the hyperoperation defined in 1). 

Then (R, ®) is again a join space, called the ray space of L. 
We can obtain the following interesting isomorphism: 
Let L be a real vector space, with an inner product, let S be 

a hypersphere of L centered at 0, the zero of L and the bijection 
function x -+ x from S onto R - {6}. The (open) minor arc Xi; of a 
great circle with endpoints x and y is mapped onto x®iJ. Let e be an 
"ideal element" , introduced to correspond to 0 and let S* = SU { e}. 
Then S* can be converted into a join space isomorphic to (R, ® ), 
where the hyperproduct of two distinct nonopposite points x and 
y of Sis Xi;. 

3) Projective join spaces over a division ring 

Let M be a left module over a division ring R. For x E M we 
denote by x* the linear manifold of M determined by x E M, that 
is x*={Ax I ).ER,). i- O}. 

We define the following hyperoperation 0 on the family L of 
all linear manifolds of M.: 

V(x*,y*) E L2, x*o y* is the set of linear manifolds deter­
mined by the elements of x* + y* , 
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where" +" is the addition in M applied to subsets of M. Then 
(L, 0 ) is a join space, called the linear manifold space of M (or a 
projective join space over R). We have: \:j a* E L, a* 0 0* = a* and 
(0* E a* 0 x* <¢:=::;.- x* = a*). 

Notice that if we define a point to be any element of L - {O*} 
and a line as any set of the following type x* 0 y* u { x* , y*} (where 
x* =1= y*), then the sets of points and lines form an analytic projec­
tive geometry over R. Moreover, all analytic projective geometries 
can be obtained by this construction. 

Now, we present some important connections between classical 
geometries and join spaces, established by W. Prenowitz and then, 
by him and by J. Jantosciak. 

§ 1. Descriptive geometries 
and join spaces 

Essentially, a descriptive geometry is the linear geometry of a con­
vex region. 

The Euclidean, hyperbolic and other classic geometries are 
examples of descriptive geometry. 

Descriptive geometries were studied by Coxeter, Pasch, Peano, 
Hilbert, Moore, Russell and their work culminated in the definitive 
treatment by Veblen. 

1. Definition. A descriptive geometry is a pair (8, R), where 
8 is a set of elements, called points and R is a ternary relation 
on 8, called betweenness, satisfying the following conditions: For 
(a, b) E 8 2 , a =1= b, the line ab is the set {x E 8 I x = a or x = b or 
(x, a, b) E R or (a, x, b) E R or (a, b, x) E R}. 

PI) if (a, b, c) E R, then a, b, c are distinct; 

P2) if (a,b,c) E R, then (c,b,a) E Rand (b,c,a) tt R; 
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P3) if (a,b,c,d) E 34, a # b, cold and {c,d} cab, then a E cd. 

P4) if (a, b) E 32, a # b, there is c E 3, such that (a, b, c) E R; 

P5) there exist three points not in the same line; 

P6) (the Transversal Postulate) if (a,b,c) E 3 3 , a # b # cola, 
atj.bc and if (d, e) E 3 2, such that (b, c, d) ER and (c, e, a) ER, 
then there is f E de, such that (a, f, b) E R. 

2. Definition. If ( a, b) E 32, a # b, then the set [a, bJ = {x E 3 I 
(a, x, b) E R} is called by segment [a, b). 

The set {x E 3 I (x,a,b) E R} is called a ray and it is said to 
emanate from a. 

We characterize descriptive geometries in terms of join spaces. 
We define on 3 the following hyperoperation V (x, y) E 3 2 , 

X # y, we have x 0 y = {t I (x, t, y) E R} and x 0 x = {x}. 
We obtain that (3, 0) is a join space, called the descriptive join 

space or the associated join space of the descriptive geometry (3, R). 
Indeed, the associativity of "0" is essentially an algebraic re­

statement of the Transversal Postulate P6); however, it has greater 
deductive power, since no restriction on a, b, c is assumed. 

From P4), it results that V (a, b) E 3 2, a # b, we have alb # 0. 
We call alb the extension of a from b. 

Notice that ala = {a} and a 0 b = boa for any (a, b) E 3 2 . 

The implication alb n cl d # 0 ===} a 0 d n b 0 c # 0 is in essence 
a reformulation of the Transversal Postulate P6), of Peano, which 
may be stated in its conventional form: " Segments which join two 
vertices of a triangle to respective points of their opposite sides 
intersect". 

Notice that the line ab is the set a 0 b u alb U bla U {a, b}. 

Now, let us consider a join space(J, 0), for which 

(7) VaEJ, aoa=ala={a}. 
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Define on J the following ternary relation: 

(a, b, e) E R -¢:=:::? a i- e and b E a 0 e. 

3. Theorem. If (a, b, e) E R, then a 0 b n b 0 e = 0. 
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Proof. Supose to the contrary that there is (a, b, e) E R, such that 
a 0 b n b 0 e i- 0. Since (a,b,e) E R, we get (3 E a 0 e. We obtain 
a E (boe)/b and a E b/e. So (boe)/bnb/c i- 0, whence boe = {b}. 
Hence e E bib = {b}, that means b = c. Since a E (boe)/b, it results 
a = b = e, contrary to hypothesis. Therefore a 0 b n b 0 c = 0. • 

4. Corollary. If (a, b, e) E R, then a, b, e are distinct. 

5. Theorem. If (a, b, e) E Rand (b, c, d) E R, then (a, b, d) E R 
and (a, e, d) E R. 

Proof. We have b E a 0 c and e E bod, whence b/a n bod i- 0, so 
b Ea 0 bod. Thus {b} = bib n a 0 d i- 0, that is b E a 0 d. If a = d, 
then b = a = d, a contradiction to (b, c, d) E R. Then a i- d and 
since bE a 0 d, we get (a, b, d) E R. 

Similarly, we obtain (a, c, d) E R. • 

In a similar way, we can prove the following results: 

6. Theorem. If (a, b, e) E R and (a, c, d) E R, then (a, b, d) E R 
and (b, c, d) E R. 

7. Theorem. If (a, b, x) E Rand (a,b,y) E R, then (x,a,y) fi. R 
and (x, b, y) fi. R. 

Similarly, if (a, x, b) E R and (a, y, b) E R, then (x, a, y) fi. R 
and (x, b, y) fi. R. 

The following theorem establishes a first connection between 
the conditions of a join space and the postulates of a descriptive 
geometry. 

8. Theorem. The ternary relation Ron J satisfies postulates PI), 
P2), P4), P6). 
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Proof. PI) is a consequence of Theorem 3. 
By Theorem 5, (a,b,c)ER and (b,c,a)ER imply (a,b,a)ER, 

a contradiction with corollary 4. Therefore, we have P2). 
P 4) is essentially a restatement of the fact that V (a, b) E J2, 

there is x E J, such that a E box. 
Now, let us verify P6). Suppose a, b, c are distinct and such that 

a does not belong to the line bc and (b, c, d) E R, (c, e, a) E R, that is 
c E bod and e E co a. From here, we obtain a 0 b n e/d =I- 0. 

Let f E aobne/d. Then (a,j, b) E R. If d =I- e, then f belongs 
to the line de. 

Suppose d=e. By Theorem 5, we have (b, c, d) E R, (c, e, a) E R, 
whence (b, c, a) E R, that means a belongs to the line bc, contrary 
to the hypothesis. Therefore d =I- e and so, we obtain P6). • 

9. Remark. The direct sum of two join spaces is a join space. 

10. Theorem. The postulate P3) is independent of the conditions 
of a join space definition. 

Proof. Let us define the following hyperoperation on JR: 
V(a,b) E JR2, a 0 a = {a} and a 0 b is the set of all real numbers 
between a and b. 

Let J = JR x JR. The element (Xl, X2) of the cartesian plane J 
will be denoted by x. 

Choose elements a,b,c,d in J, such that ViE{I,2}, ai<bi<ci, 
CI = dl and C2 < d2 · 

The line ab is composed of a, b, all the points which are above 
and on the right of b, all points which are below and on the left of 
a and all points which are simultaneously above and on the right 
of a and below and on the left of b, that is 

ab = {x = (XI,X2) E J I [Xl = al and X2 = a2] or 

[Xl = b1 and X2 = b2] or [bl < Xl and b2 < X2J or 

tal < Xl < bl and al < X2 < b2J or [Xl < al and X2 < a2]}. 

The line cd is the ordinary Euclidean vertical line cd, that is cd = 
= {x = (Xl,X2) E J I CI = d1 = xd· 
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We have {C, d} cab, where c i= d, but a tj. cd. 
Hence P3) is not verified in J, which means postulate P3) is 

independent of the conditions of join space definition. _ 

Some notions we shall use in the following: 
Let (J, 0) be a join space, satisfying (T) . 
For S C J, then we denote by < 8 > the least closed subhyper­

group of (J, 0), which contains 8 and we call it the closed subhyper­
group generated by 8. 

We say that 8 is a set of generators of < 8 >. 
If A and B are closed subhypergroups of (J, 0) and B is a 

maximal proper subset of A, then we say that A covers B. 
If S c J and V (a, b) E 8 2 , we have a ° b c 8, we say that 8 is 

closed under "0" or, in geometrical language, 8 is convex. 

11. Proposition. If 8 1 and 82 are convex, then also 8 1 n 82 , 

8 1082 and 81/82 are convex. 

Proof. We have 

(810S2)0(S1082) = (810S1)0(82082) c 8 1082 and 

(81/S2)0(81/82) c «S1/82)081)/82 = 
= (81 0 (81/82))/82 c «81°81)/82)/82 c (S1/82)/82 = 
=81/(82°82 ) c 81/82 (by Theorem 64, 5),4),3), p.12). 

-
Now, let N be a closed subhypergroup of (J,o) and a E J. 

Then N/(N/a), denoted (a)N, is called the coset of N determined 
bya. 

12. Theorem. Let N be a closed subhypergroup of (J, 0). Then 
the cosets of N are closed under "0 ", are mutually disjoint and 
cover J. 

Proof. By Proposition 11, Va E J, (a) N is closed under "0". We 
also have a E (a)N, since V (a, b) E J2, b E a/(a/b). We have to 
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show only that the cosets are disjoint, that is if a E (b)N, then 
(a)N = (b)N· Since a E N/(N/b), it follows 

N/a C N/(N/(N/b)) C (N 0 (N/b))/N c (N/b)/N = 
= N/(b 0 N) = (N/N)/b = N/b, see Theorem 64,3),4),5), p.12). 

On the other hand, from a E N/(N/b) it follows bE N/(N/a), so 
that N/b eN/a, by the above argument. Therefore N/a = N/b, 
whence (a)N = (b)N. • 

We shall denote by J II N the set of all cosets of N determined 
by elements of J. Define on J II N the hyperoperation: 

(a)N 0 (b)N = {(X)N I x E a 0 b}. 

13. Remarks. 

1. The hyperproduct "0" of cosets in J II N is independent of the 
elements of J, which determine the cosets. 

2. JIIN has a unique identity element, namely N and if n E N, 
then {n)N = N. Indeed, ifn E N, then (n)N = N/(N/n) = N. 

14. Proposition. For each element A of JIIN, there exists a 
unique element X such that N E A 0 X. 

Proof. Suppose N E A0X, where A = (a)N and X = (X)N. Then 
(a)N 0 (X)N = {(t)N It E aox} 3 N, that means there is n E N, 
such that n E aox. Hence a E N/x so that X = N/(N/x) :) N/a. 

Since the cosets of N are disjoint, there exists at most one X 
such that N E A 0 X. 

On the other hand, if we choose x E N / a then X = (x) N 

satisfies N E A 0 X. • 

X will be called the inverse of A and will be denoted by A'. 
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15. Corollaries. 

1. We have VA E JIIN, (A')' = A; 

2. (a)N = (a')N if and only if aoa' n N f:. 0 (i.e. a' E N fa). 

The order of J II N is the cardinality of the set J II N. 

16. Remark. If we restrict J to be an Euclidean space and N a 
point, then J II N is essentially the set of rays issuing from N. 

Projecting the rays of J II N onto a hypersphere centered at N, 
we see that J II N is essentially a spherical space; we define the minor 
arc of a great circle joining two points as their "hyperproduct". 

1 7. Definition. If A and B are closed subhypergroups of (J, 0) 
such that B C A and the order of AliBis 3, then we say that B 
separates A. 

Now, we introduce three new postulates, for a join space (J, 0) 
(in which condition (T) holds), necessary to characterize a descrip­
tive geometry. 

JI) If (a, b) E J2, a f:. b, then < a, b > covers a. 

This is a consequence of the postulate "two points belong to a 
unique line" . 

18. Remarks. 

1) A join space satisfying JI) is an exchange space. 

2) JI) is independent of conditions of join space definition and 
of condition (T). 

Indeed, it is sufficient to consider J = lRx lR, V ( a, b) E lR 2 , 

aoa={ a} and aob is the set of all real numbers between a and b. 
As in Theorem 10, we consider a, b, c, d in J, such that 

Vi E {I, 2}, ai < b; < C;, Cl = d1 and C2 < d2, where x = (Xl, X2), 

"Ix E 1. 
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We have < c, b >= J, < c, d > is represented by the vertical 
"line" cd. Therefore c E< c, d > C < c, b > and < c, d > =I < c, b > . 
Thus c makes Jl) invalid in J, but all the conditions of a join space 
definition as well as (7) are satisfied· _ 

19. Definition. A subset B of a closed subhypergroup A of an 
exchange space J is called a basis of A if it is independent and 
furthermore < B > = A. 

Any closed subhypergroup of an exchange space has a basis. 
Any two bases of A have the same cardinal number called the 

dimension of A, denoted by d(A). 
If B is another closed subhypergroup of (J, 0), such that 

B c A, then d(B) :S d(A). 
If A and B are finite dimensional closed subhypergroups of 

(J, 0), such that An B =I 0 then the dimensional equality holds: 

d« A,B » + d(A n B) = d(A) + d(B). 

If A covers B, then d(A) = d(B) + l. 
If d(A) = n is finite, any independent set of n elements of A is 

a basis of A. 

The following postulate J2) establishes that (J, 0) contains two 
closed subhypergroups A, B such that B separates A. 

We may restate it, as follows: 

J2) There exist A and B, closed subhypergroups of (J,o) such 
that B C A and All B has order 3. 

J2) is verified in a descriptive geometry, since we can take A 
to be any line and B one of its points. 

In order to avoid introducing the hypothesis d( J) > 2 in the 
following theorems, we postulate 

J3) d(J) > 2 
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meaning J contains a set of three independent elements. 

20. Theorem. Let N be a closed subhypergroup of (J, 0) and 
(a, b, a', b') E J4, such that aoa' n N i= 0 i= bob' n N. Then 
< a, b, N > = N/(aob) UN /(aob') U N/(a'ob) U N/(a'ob') U N/a U 
UN/bUN/a' U N/b'UN. 

Proof. First of all, notice that if A and B are closed subhyper­
groups of (J, 0) such that A n B i= 0 then < A, B >= A/ B 
(by Theorem 74, p.14). We have 

< a,b,N > =« a,N >, < b,N »=< a,N > / < b,N >= 
= (NUN/aUN/a')/(NUN/bUN/b') = 

(see [312], Theorem 10.6, Corollary 2) 

= N/N U N/(N/b) U N/(N/b') U (N/a)/NU 

U (N/a)/(N/b) U (N/a)/(N/b') U (N/a')/NU 

U (N/a')/(N /b) U (N/a')/(N/b'). 

Notice that (N/x)/(N/y) = (N/(N/y))/x = (N/y')/x = N/(xoy') 
(by Theorem 69, p.13). On the other hand, N / N = N, so we obtain 
the desired result. _ 

21. Corollary. If N is a closed subhypergroup of (J, 0), then 
< a,b,N > /IN = (a)N ® (bN) U (a)N/(b)N U (b)N/(a)N U «a)N ® 
®(b)N)' U (a)N U (b)N U (a)~ U (b)~ uN. 

22. Theorem. V ( a, b) E j2, we have 

< a, b > = aobUa/bUb/a U {a,b}. 

Proof. The result is trivial if a = b and thus suppose a i= b. 
By J3), there is an element x such that a, b, x are distinct and 

form an independent set. 
According to Corollary 21, if t E< a, b > there are at most nine 

sets into which (t)x can fall. We shall consider these possibilities: 
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1) Suppose (t)x E (a) x ® (b)x. Then there is t' E aob, such 
that (t)x = (t')x. We show t = t'. We have t' E< x,t > so that 
{t, t'} C < a, b > n < x, t > . On the other hand, by the dimen­
sional equality, we have d« a,b > n < x,t » = d« a,b » + 
+d« x,t » - d«< a,b >,< x,t ») = 2 + 2 - 3 = 1, since 
«a,b >,< x,t »=< a,b,x > . Hence < a,b > n < x,t > 
consists of a single element, so that t = t' and t E aob. 

2) Now, consider the possibility (t)x E (a)x/(b)x. 
We have (a) x E (t)x ® (b)x, so that there is a' E bot, such 

that (a)x = (a')x. If t = b, then a' = b and (a)x = (b)x, con­
trary to the independence of a, b, x. Hence t #- b. By J1), from 
< a, b >=>< b, t >3 b, we obtain < b, t > = < a, b >, whence 
a E< a, x > n < b, t > . 

On the other hand, a' E< a, x > n < b, t > . Applying the 
dimensional equality, as above, we obtain a = a'. Therefore, a E bot, 
so tEa/b. Similarly, (t)x E (b)x/(a)x implies t E b/a. If (t)x = (a)x 
we obtain t = a and similarly, (t)x = (b)x implies t = b. 

3) Now, suppose (t)x C «a)x ® (b)x)' = (aob)x' Then there 
exists t E aob, such that (t)x = (t)~. From here it follows tot 3 x. 
Since {t,l} C< a,b >, it follows x E tot C< a,b >, which is 
impossible since a, b, x are distinct and form an independent set. 

In a similar way, we can show that the other three possibilities 
for (t)x vacuous. Therefore t E aobUa/bUblaU{a, b} and < a, b > = 
= aob U alb U b/a U {a, b}. • 

23. Remark. Postulate J3) is essential for the validity of the last 
theorem. We can show this, constructing the following example: 

Let J = ax U ay U az, where ax, ay, az denote pairwise disjoint 
open intervals. 

On J, we define the hyperoperation: 

\I (u, v) E J2, U #- v, we have uou = u; uov = au U av, 

where au and av are open segments. 
Then (J, 0) is a join space, in which (7) holds; moreover, J1) 

and J2) hold. 
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Let c E ax and b E ay. Then J3) is invalid since < c, b >= J 
and d( J) = 2. The last theorem fails, because 

cob U c/b U b/c U {c, b} = ax U ay =1=< c, b > . 

The following theorem is a characterization of descriptive geome­
tries. 

24. Theorem. Descriptive geometries are characterized as join 
spaces satisfying JI), J2), J3) and (7). 

Proof. Let (5,R) be a descriptive geometry. V(x,y) E 52, x =1= y, 
we define xox = {x} and xoy = {t I (x,t,y) E R}. Then (5,0) is 
a join space, which verifies JI), J2), J3) and (7), as we have seen 
before. 

Conversely, if (J, 0) is a join space satisfying(7) then PI), P2), 
P4) and P6) hold, as we have seen before. 

Recall that (a, b, c) E R -¢=:} a =1= c and b E aoc. 
We have to show that JI), J2) and J3) imply P3) and P5). 
The line ab (where a =1= b) is the set aobUa/bUb/aU{a,b} and 

we have proved before that the line ab coincides with < a, b > . 
We verify that: if a =1= band {c, d} C < a, b >, where c =1= d, then 

< a, b >=< c, d > . This follows from JI): for c =1= a or b; suppose 
c =1= a. Then < a, b >:)< a, c >3 a and by JI), it follows < a, b > = 
= < a, c > . Thus d E< a, c > . Since c =1= d, we can show similarly 
< a,c >=< c,d >, so that < a,b >=< c,d > . This obviously 
implies P5). 

We have to verify now only P3). By J3) there exist distinct 
elements a, b, c of J, which form an independent set. Suppose a, b, c 
are contained in a line, say the line pq = < p, q > . But then 
< . a, b > = < p, q >3 c, contrary to the independence of a, b, c. 
Therefore, a, b, c are not in the same line and so, P5) is verified. _ 

§2. Spherical geometries and join spaces 

25. Definition. An (abstract) spherical geometry is a system 
(5, R), where 5 is a set of elements called points and R is a ternary 
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relation on 8 called betweenness, which satisfies the following pos­
tulates: 

(i) if (x, y, z) E R, then x, y, z are distinct; 

(ii) if (x, y, z) E R, then (z, y, x) E R; 

(iii) for any x, there exists a unique x' (called the opposite of x) 
such that x' =/: x and the following implication holds: 

(x, u, v) E R ===> (u, v, x') E R; 

(iv) if y =/: x and y =/: x', then there exists u such that (x, u, y) E R; 

(v) if" 0" is defined in (*) then (x 0 y) 0 z = x 0 (y 0 z), whenever 
both members are defined. 

26. Examples of spherical geometries: 

1. Let 8 be an Euclidean n-sphere and R be defined as follows: 

{

X, z are distinct and nonopposite and 
(x, y, z) E R ~ y is an interior point of the minor arc 

of a great circle with joins x and z. 

Then (8, R) is a spherical geometry, called the Euclidean sphe­
rical geometry. 

2. Let 8 be the set of rays emanating from a point of an ordered 
affine space of arbitrary (finite or infinite) dimension. We 
define 

{

X, z are distinct 
(x, y, z) E R ~ the ray y is interior to the angle 

formed by the non-opposite rays x and z. 

Then (8, R) is a spherical geometry (which includes the first, 
in the sense of isomorphism). 

We can define on 8 the following partial hyperoperation: 
V(x,y)E82 , y =/: x, y =/: x', we have 

xoy = {t I (x, t, y) :3 R}, xox = {x}. 
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Except in the trivial cases, it is impossible to extend this partial 
hyperoperation to an semihypergroup on 8: 

27. Theorem. The partial hyperoperation (*) for a spherical geo­
metry on at least three points does not extend to a semihypergroup. 

Proof. Suppose such an extension of" 0" possible in 8. 
I) First of all, we shall check the following equality: 

V(x,y) E 8 2 , y I: x, y I: x', 
xo(x'oy) = xoy U {y} U x'oy. 

Notice that the hyperproduct xo(x'oy) can be considered. Indeed, 
since y I: x', if we suppose x' E ;t'oy, then we have (x', x', y) E R, 
a contradiction. Thus, x' rf. x'oy. Moreover, x rf. x'oy, otherwise 
(x', x, y) E R, whence (x, y, x) E R, a contradiction. 

Therefore, we can consider the hyperproduct xo(x'oy). Now, 
we verify: 

u E xo(x'oy) {::::::::} u E xoy U {y} U x'oy. 

"===}-" There exists vEx'oy, such that uExov. Hence (x',v,y)ER, 
whence (v,y,x) E R and so (x,y,v) E Rand (y,v,x') E R. It 
follows xl: v and x' I: v. On the other hand, from u E xov it 
follows (x, u, v) E R. If u = y we have u = y E xoy U {y} U x'oy. 
Suppose u I: y. Notice that if (a, t, b) E R and (a, s, b) E R, t I: s, 
then it can be easily verified that (a,t,s) E R or (a,s,t) E R. 
Therefore, from (x, u, v) E R, (x, y, v) E R and u I: y it results 
(x,u,y) E R or (x,y,u) E R. 

If (x, u, y) E R, then u E xoy. 
If (x,y,u) E R, then (y,u,x') E R, whence (x',u,y) E Rand 

so u E x'oy. 
Therefore, u E xoy U {y} U x'oy. 

"-¢::=" Suppose u E xoy. Then (x, u, y) E R. Since y I: x and 
y I: x', there exists z, such that (x',z,y) E R. Hence (z,y,x) E R 
and so (x, y, z) E R. So we have x' I: z and x I: z. 



40 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Using the associative law, the following implication can be ob­
tained: 

(a, b, c) E R and (a, c, d) E R ===> (a, b, d) E R. 

Hence, from (x, u, y) E R, (x, y, z) E R it follows (x, u, z) E R. 
Thus u E xoz. From (x', z, y) E R it follows z E x' oy. Therefore 
u E xo(x'oy). 

Now, suppose u = y. Then we obtain u E xoz and z E x'oy, 
with the same choice of z and so u E xo(x'oy). 

Finally, suppose u E x'oy. Then (x', u, y) E R and we have 
u i= x, u i= x'. 

Now choose z such that (x', z, u) ER. Then (z, u, x) E Rand 
(x, u, z) E R. From (x', z, u) E R and (x', u, y) E R, we obtain 
(x',z,y) E R, that means z E x'oy. On the other hand, u E xoz 
and so u E xo(x'oz). Therefore V (x, y) E 8 2 , X i= y i= x', we have 
xo(x'oy) = xoy U {y} U x'oy. 

II) Suppose (x, p) E 8 2 , x i= p i= x'. From I) and the associative 
law we obtain (xox')op = xop U {p} U x'op. So, P E (xox')op, that 
means there is s E xox', such that p E sop. If p i= sand p i= s' then 
p E sop implies (s,p,p) E R, a contradiction. 

Therefore p = s or p = s'. It follows p E xox' or p' E xox'. 
It is not restrictive to suppose p E xox'. Since x i= p i= x', there 
exists q E 8, such that (p',q,x) E R. Hence (q,x,p) E R and so 
(P,x,q)ER, whencexEpoq. Sincep E xox', we obtain x E (xox')oq. 
But q i= x and q i= x', and since (xox')oq = xoq U {q} U x'oq, we 
obtain x E xoq U {q} U x'oq. All the possibilities x E xoq (that 
is (x,x,q) E R), x = q, x E x'oq (that is (x',x,q) E R, whence 
(x,q,x) E R) are false, and so the proof is complete. _ 

However, we can enlarge 8 by the adjunction of an "ideal 
point", which will play the role of an identity. In this manner we 
obtain a join space associated with the given spherical geometry. 
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Let e fj. 8 and let 8' = 8 U { e }. We extend the hyperoperation 
"0" as follows: 

{ Vx E 8, xox' = {x,x',e}; 
V y E 8', yoe = eoy = y. 

Thus, we obtain a join space (8', 0) with identity "e" . 
Remark that the associative law holds for (S', 0). 
Now, let us check the implication: 

alb n cld =/: 0 =-=* aod n boc =/: 0. 

Notice that Va E S', a has a unique inverse a' and V (a, b) E S'2, 
alb = aob'. So, alb n cld =/: 0 implies aob' n cod' =/: 0, whence 
{a} n bo( cod') =/: 0, hence aid' n boc =/: 0, that is aod n boc =/: 0 
(by Theorem 64, 2), p.12). 

Therefore, (8', 0) is a join space, called the associated join space 
or a spherical join space of the spherical geometry (8, R). • 

28. Theorem. A join space (J, 0) is the associated join space of a 
spherical geometry if and only if (J, 0) has an identity and Va E J, 
we have aoa = a and V x E J, x distinct from the identity, < x > 
has cardinality 3. 

Denote by < x > the least closed subhypergroup of (J, 0) which 
contains x E J. 

Proof. "=-=* Let (8', 0) be the associated join space of a spherical 
geometry (8, R). 

We have only to check that if XES', x =/: e, then the order of 
< x > is 3. Any closed subhypergroup of (8',0) which contains x, 
must contain {x, x', e} = X. The set X is the least closed subhyper­
group of 8' which contains x. Moreover x =/: x' =/: e =/: x, hence 
< x > has order 3. 

"<¢=" Let e be the identity of J and let 8 = J - { e }. We define 
the following ternary relation on 8: 

(x,y,z) E R -¢=::> Y E xoz, z fj. {x, x'} 
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(where x' is the unique inverse of x). 
Now, we show that 'Vx E S, xox' = {x,x',e}. Since e E 

E xox' it follows that x E xo(xox') = (xox)ox' = xox'. Simi­
larly, x' E xox'. Moreover x f. e f. x' f. x. Indeed, if x = x', then 
xox' = xox = {x} and so {x, e} is the least closed subhypergroup 
of (J, 0), which contains x and so < x > has order 2, contrary to 
hypothesis. 

Therefore {x, x', e} C xox'. But {x, x', e} is the least closed 
subhypergroup which contains x, so xox' C {x, x', e}. Hence xox' = 
= {x,x',e}. 

Now, we shall verify that 'V xES, xoe = x, that is the identity 
e is a scalar one. Indeed, we have xoe c {x, x', e}, which is a 
subhypergroup. Suppose to the contrary e E xoe. Then x' E xoe, 
otherwise xoe = {x, e} and so ord x = 2, a contradiction. 

Hence, x' E xoe, whence x E e/ x' n x' / e. Since (J, 0) is a join 
space, it follows that e = x', which is false. 

We shall prove that (S, R) is a spherical geometry. 

(i) if (x, y, z) E R, then we have z fi. {x, x'} and y E xoz. Suppose 
to the contrary y = x. Then x E xoz. On the other hand, 
( J, 0) is join space with a scalar identity, so it is a canonical 
hypergroup. From x E xoz, we obtain z E xox' = {x,x',e}, 
which is false. So, y f. x. Similarly, we obtain y f. z. 

(ii) if (x, y, z) E R then y E xoz = zox, whence (z, y, x) E R. 

(iii) if (x, u, v) E R, then u E xov, whence v E uox', hence 
(u, v, x') E R. 

(vi) ify tf. {x,x'}, there is u E xoy, and so (x,u,y) E R. 

Therefore, (S, R) is a spherical geometry. Moreover, (J, 0) is the 
associated join space. _ 
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§3. Projective geometries and join spaces 

29. Definition. A projective geometry is a system (8, T) where 
8 is a set of elements called points, and T is a set of subsets of 8, 
called lines, which satisfies the following properties: 

(i) any line contains at least three points; 

(ii) any two distinct points a, b are contained in a unique line, 
denoted by L(a, b); 

(iii) if a, b, c, d are distinct and L( a, b) n L( c, d) =/:. 0, then 
L(a,c) n L(b,d) =/:. 0. 

We have already mentioned the connections between the pro­
jective join spaces and the analytic projective geometries. 

Now, we wish to associate a join space with a given projective 
geometry. 

Remember that in a projective join space (L, 0) over a division 
ring R, we have 

\I a E L, aD a = 0 if R = ~2' 
a 0 a = {a, OJ, otherwise. 

Moreover, if R = ~2' each line of the analytic projective ge­
ometry has exactly three points, otherwise each line has more than 
three points. 

Therefore, when an abstract projective geometry (8, T) con­
tains a line, we are able to tell how the hyperoperation of a point 
to itself should be defined. 

If we consider a projective geometry with one point and no 
lines, we are not able to discriminate between the two choices of 
the hyperproduct of the point to itself. 

According to these considerations, we shall associate with a 
projective geometry (8,T), a join space (8',0) as follows: let 8' = 
= 8 U {e }, where "e" is the ideal point, which plays the role of O· 
(e f/. 8). 

Case I. T =/:. 0. 
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1. If (x,y) E 8 2 , xi- y, then xoy = L{x,y) - {x,y}. 

2. Let x E 8. If some line of T contains exactly three points, 
then xox = {e}, otherwise xox = {x,e}. 

3. If a E 8', eoa = aoe = a. 

Case II. T = 0. 

1. if 8 = {a}, then we can define two hyperoperations on 8' and 
for each of these, "e" is an identity, so we have aoa = {e}, 
while for the other aoa = {a, e}. 

2. if 8 = 0, we define eoe = {e}. 

30. Theorem. (8', 0) is a join space. 

Proof. First of all, notice that: 

(O:') e E xoy {::=} x = y; 

{(3) Let (x, y, z) E 8 3 . Then x, y, z are distinct and collinear if and 
only if z E xoy and xi- y. 

Now, let us check that 

h) V{x,y) E 8'2, x/y = xoy. 

1. Indeed, if (x,y) E 8 2 , xi- y and z E xoy then z E 8, so, by 
((3), the points x, y, z are distinct and collinear, whence y, z, x are 
distinct and collinear, so that x E yoz and Z E x/yo 

Conversely, if Z E x/y, then x E yoz and Z E 8. If y = z then 
x E yoy C {y, e}, whence x = y, contradiction. Thus y i- z and 
the steps can be retraced to yield z E xoy. 

2. If (x,y) E 8 2 , X = y. Suppose xox = e. Then 

x/x = {t I xExot} = e = xox. 

Suppose xox = {x, e}. Then 

x/x = {t I XExot} = {x, e} = xox. 
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3. The remaining cases x = e, and y = e are easily disposed 
of. So, V(x,y) E S'2, we have x/y = xoy. 

We have to check now that the following implication holds 
in S': 

(/-t) x/y n zit # 0 ===? xot n yoz # 0. 

Since x/y n zit # 0 it results that there is u E xoy n zot. 

Case 1. If x, y, z, t are distinct in S and noncollinear, then 

(L(x,y) - {x,y}) n (L(z,t) - {z,t}) # 0 and L(x,y) nL(z,t) # 0. 

By the definition of a projective geometry it follows 
L(x, t) n L(y, z) # 0, so 

(xot U {x, t}) n (yoz u {y, z}) # 0. 

Suppose YExot. It results t Ey/x = xoy so that L(x, y)nL(z, t) 3 t. 
But u E L(x, y) n L(z, t) and u # t. Therefore, L(x, y) = L(z, t), 
contrary to hypothesis. ThUs y FI. xot. Similarly, z FI. xot, x FI. yoz 
and t FI. yoz. Hence the only possibility is xot n yoz # 0. 

Case 2. If x, y, z, t are distinct in S and collinear, then by the 
definition of a projective geometry, we have L(x, t) = L(x, y) = 
= L(y, z). Hence, there is u E L(x, t) nL(y, z). Then u FI. {x, y, z, t} 
implies u E xot n yoz. 

Case 3. x, y, z, t are not distinct and in S. Since the proof is based 
on xoy n zot # 0, it suffices to consider the situations x = y, x = z 
and x = t. 

The result is immediate for x = z. 
If x = y, then we have two possibilities: 

i) The result is clear for z = t. 

ii) Thus let z # t. We have uExoy = xox C {x,e}. Moreover 
u # e, otherwise z = t. Thus u = x and by the definition of 
the hyperproduct in S', every line of the projective geometry (S, T) 
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contains at least four points. Since x E zot, points x, z, t are distinct 
and collinear. 

Let v E L(x,z), v tf. {x,z,t}. Then v E xotnxoz = xotnyoz. 
If x = t. We may assume x tf. {y, z}. Then U E L(x, y)nL(x, z). 

Hence u :f. x yields L(x, y) = L(x, z). If y = z then xot n yoz = 
= xox n yoy 3 e. Suppose y :f. z. Then x, y, z, u are distinct and 
collinear. By a well-known theorem of projective geometry, all 
lines of (S, T) have the same cardinality and so contain at least 
four points. By the definition of the hyperproduct in S', we have 
xox = {x,e}. Hence xot n yoz = xox n yoz 3 x. 

Case 4. One of x, y, z, t is e. Say x = e. Then xoy n zot :f. 0 yields 
y E zot, so that xot n yoz = {t} n y / z :f. 0. The other possibilities 
are treated similarly. 

Now, let us verify the associativity. Suppose w E (xoy)oz, 
where (x,y,z) E S'3. Then w/zny/x = w/znxoy:f. 0, whence, by 
(/1) it follows woxnzoy:f. 0. Then w/xnyoz :f. 0 and wE xo(yoz). 
Thus (xoy)oz ~ xo(yoz). 

The reverse inclusion can be verified similarly and since the 
commutativity holds, (S',o) is a join space. _ 

31. Remark. "e" is an identity of (S', 0) and Va E S, we have 
< a >= {a,e} since {a,e} ~< a > and {a,e} is linear. Thus, 
< a > has cardinality 2, for any a E S. 

(S',o) is called the associated join space of the projective geo­
metry (S, T) or a projective join space. 

Except of the choice of "e", (S', 0) is unique, except when S 
consists of a single point. In this case, there are only two associated 
join spaces. 

32. Proposition. If (J, 0) is a join space with identity e, such 
that < x > has cardinality 2, for any x E J - {e}, then (J, 0) is 
an exchange space, for which the following properties hold, for any 
( x, y) E (J - {e})2 : 

(i) < x > = {x, e}; 
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(ii) X-l = x; 

(iii) e E xox C {x, e}; 

(iv) < x,y >= xoyu {x,y,e}. 

Proof. (i) follows directly from the hypothesis, whence (ii) results 
and then (iii) is immediate from (i) and (ii). 

(iv) We have < x,y >=« x >,< y »=< x > / < y >= 
=< x > 0 < y > = {x,e}o{y, e} = xoy U {x,y,e}. 

Recall now that an exchange space is a join space which satis­
fies the following conditions: 

I) if x E< y > and x is not an identity then < x > = < y > . 

II) if z E< x,y > and z ft< y > then < z,y >=< x,y >. 

Moreover, if the given join space has a scalar identity then I) and 
II) are equivalent (Theorem 75, p.14). So, it sufficies to verify I). 

Let U E<.X >, u :I e. By (i), we have < x >= {x,e}. Thus 
u=xand<u>=<x>. _ 

33. Lemma. Let (J, 0) be a join space with identity e and such that 
< s > has cardinality 2, for any s :I e. Suppose there exist a, bin J, 
such that aob is a singleton and e ft {a, b}. Then any hyperproduct 
of elements of J is a singleton and (J, 0) is a commutative group. 

Proof. First of all, we prove that there is x E J - {e}, such that 
xox = e. Suppose this is false. Let y E J. By the above Proposition, 

e E yoy C {y,e}, whence yoy = {y,e}. 

Let w = aob. Then 

{w, e} = wow = aoboaob = aoaobob = {a, e }o{b, e} = 
= {ab,a,b,e} = {w,a,b,e}. 

Since e ft {a, b} we have a = b = w and then a = aoa = {a, e}, a 
contradiction. 
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Therefore, there exists x E J - {e}, such that xox = e. 
We shall prove more, that "IrE J, we have ror = e. 
Suppose on the contrary ror i= e. We have roxox = roe = r. 

Let t E rox. Then tox c roxox = r, hence tox = r. Since ror i= e, 
it results 

{r, e} = ror = toxotox = totoxox = tot C {t, e}. 

Hence r = t and rox = r, whence x E rlr = {r,e} so that x = r, 
contradiction with TOr i= e. 

Therefore, "IrE J, ror = e. 
Finally, we prove that V (u, v) E .P, uov is a singleton. Let 

Tl E uov 3 T2. Then 

rlor2 C uovouov = uouovov = eoe = e, 

whence rl = r2 as desired. • 
34. Theorem. Let (J, 0) be a join space with identity e, such that 
< t > has cardinality 2 for "It E J - {e}. Then (J, 0) is the 
associated join space of a projective geometry. 

Proof. Let 8 = J - { e }. The element of 8 will be called the points. 
Let L(x, y) = < x, y > -{ e}, if (x, y) E 8 2, X i= y. We call L(x, y) 
a line and we denote the set of all lines by T. 

We prove that (8, T) is a projective geometry and (J, 0) is the 
associated join space. 

First of all, we shall check that V (x, y) E 8 2 , x i= y, we have 

L(x,y) = xoyU {x,y}. 

By the above Proposition, we have 

L(x,y) =<x,y> -{e} = (xoyU{x,y,e})-{e} =xoyU{x,y}. 

Now, we verify that any line is a set of points, which contains at 
least three points. Let (x,y) E 8 2 , x i= y. We have L(x,y) C 8. 
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Suppose x E xoy. Then y E x I x c {x, e}, which is false. So, 
x f/. xoy and similarly, y f/. xoy. Therefore, L(x,y) contains at least 
three points. 

We verify that any two distinct points are contained in a unique 
line. Indeed, if (a, b) E S2, a =I b, then a E L(a, b) 3 b. Suppose that 
a E L(x,y) 3 b. Then {a,b} c< x,y > and {a,b} is independent. 

By the Exchange Theorem, we have that < a, b > = < x, Y >, 
so that L(a, b) = L(x, y). 

Finally, we verify that if a, b, e, d are distinct and L( a, b) n 
nL(e, d) =10, then L(a, e)nL(b, d) =10. From L(a, b)nL(e, d) =10, it 
follows (aobU{a, b} )n(eodU{ e, d}) =10. Suppose that aobneod =10. 
Then aob-1 n doe- 1 =I 0 and alb n die =I 0. Hence aoe n bod =I 0 
and so L(a, c) n L(b, d) =10. 

Now, suppose that e E aob. Then b E cia = aoe, whence 
L(a, c) n L(b, d) =10. 

The remaining cases are symmetrical to e E aoe. 
Therefore (S, T) is a projective geometry. 
The next step is to verify that (J, 0) is the associated join space 

of (S, T). Consider Sf = S U {e} = J. If J = {e} then S = 0 and 
T = 0 and (J, 0) is an associated join space of (S, T) by definition. 
If J = {u,e}, u =I e, then S = {u}, T = 0. We have eou = uoe = u, 
eoe = e and e E uou. Hence U01: = e or uou = {u, e} and in both 
cases (J, 0) is an associated join space of (S, T). 

Suppose now that J has at least 3 elements, that is S has at 
least two elements and T =10. 

The associated join space (Sf, 0 ) of (S, T) is in this case defined 
as follows: 

for (x,y) E S2, X =I y, xo y = L(x,y) - {x,y}, 
if xES and if some line of T contains exactly three points, 
then x 0 x = e; otherwise, xo x = {x, e}; 
ifxESf, eox=xoe=x. 

Now, we have only to verify that 

( Sf, 0 ) = (Sf, 0). 
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For 'r;/xES', xoe = XD e. For all xES', xoe = XD e. If (x,Y)ES2 , 

x =I y, we obtain as above that {x,y} nxoy = 0. Then we have 
XD y = L(x,y) - {x,y} = xoy. 

Finally, consider xES. Suppose that some line L(u, v) of 
T contains exactly three points, so that x 0 x=e. Since L( u, v) = 
= uov U {u, v}, we see that uov is a singleton. By the Lemma, it 
results that xox is a singleton. Hence xox = e and x 0 x = xox and 
the theorem is proved. • 

Now, we can characterize projective geometries in terms of join 
spaces as follows: 

" A join space (J, 0) is the associated join space of a projective 
geometry if and only if it has an identity e and 'r;/ x E J - { e }, 
< x > has cardinality 2." 

§4. Multivalued loops and projective 
geometries 

In this paragraph, we prove that the associated join space of a 
finite projective geometry (S, T) with N points on each line (N 2': 3) 
is isomorphic to a quotient of an ordinary loop modulo a special 
equivalence relation. The following results have been obtained by 
St. Comer. 

Let (A,·, e) be a loop and p an equivalence relation on A. If 
X, fj and z are equivalence classes, and z ~ x . fj, we say that z 
is (x, fj)-projective if 'r;/ u E x, ::Iv E fj such that u . v E z and 
'r;/ VI E fj, ::lUI E x, such that UI . VI E z. We say that the equivalence 
relation p is special if {e} is an equivalence class and every product 
x· fj of equivalence classes is a union of (x, fj)-projective equivalence 
classes. 

A quasihypergroup (B,·, e) (where e E B) is called a multi­
valued loop if e is a scalar identity of Band 'r;/ a E B, there exist 
unique x, yin B such that e E ax n ya. 
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It is easy to verify that a quotient of a loop (A", e) modulo 
a special equivalence relation p is a multivalued loop (AI p, *{ e} ), 
where Z E x * fl if and only if Z ~ x· fl. Note that not every 
multivalued loop is isomorphic to a quotient of a loop modulo a 
special equivalence relation (see [43, Prop. 2]). 

The construction of the corresponding loop 
and of a special equivalence relation 

Let (8',0) be an associated join space of the finite projective geo­
metry (8, T) with N points on each line (N;:::: 3). We shall construct 
a loop (L, " q) and a special equivalence relation p on L, such that 
(8',0) is isomorphic to (Llp,*{q}). 

Case I: First, we consider a finite projective geometry (8, T), where 
each line contains N points, N ;:::: 4. Let us denote the points of 8 
by PbP2, '" For each Pi, we choose a set Ai with exactly N - 2 
elements, such that Vi "I j, Ai n Aj = 0. 

Let q be an element, such that q fj. UAi. Set L = {q} U UAi 
i i 

and let p be the equivalence relation on L, for which {q} and the 
Ai are the equivalence classes. 

Ifpi"lPj, then let L(Pi,pj)={Pkp ···,PkN}' where k1<k2<·· ·<kN· 
Let L(PhPj)* be obtained from L(Pi,Pj) by permuting (Pku ···,PkN) 
cyclically to start with Pi and then deleting Pi and Pj. 

Let L(Pi,Pj)* = (Psii(1)"'Psii(N-2»)' If F is a finite subset of 8 
and Pi E F, we say that Pi has rang n in F, if Pi is the nth element 
of F, with respect to the linear ordering induced by the indices. 

For i "I j and Pm E L(Pi,Pj) - {Pi,Pj} let rij(m) be the rank of 
Pj in L(Pi,Pj) - {Pi, Pm} and let r'(j) be the rank of Pj in L(Pi,Pj)' 

Notice that if Pi, Pj, Pm are three distinct collinear points, then 
r'(j) = f"'(j). We also find that 

{ 
r'(j), if i > j < m 

rij(m) = r'.(j) - 1, if i < j < m, or m < j < i 
r(j) - 2, if i < j > m. 
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In the following, we regard the second index k of ai,k E A as an 
integer modulo N - 1, hence sums and differences involving these 
indices are calculated modulo N - l. 

Let us define the following operation on L: 

Va E L, q. a = a . q = a 

\..J( ) A Z {ai,kH' if k+f=#O(modN-1) 
v ai,k,ai,i E i, ai,k'ai,i= q, if k+f:=O(modN-1) 

Vi =1= j, ai,k' aj,i = am,n, where 

_{sij(k+f-1), ifi<j and 
m- sij(k+f), if i>j 

n = rij(m) + k - l(mod N - 1). 

We verify that (L, ., q) is a loop and (S', 0) ~ (Lj p, *, {q}). 

Case II: As above, a similar loop construction for the case N = 3 
also yields a loop whereby the special corresponding equivalence 
relation is the identity. Therefore, this construction does not give 
us the desired isomorphism. 

As above, order the set P of all points of (S, T) as PbPZ, ... For 
each Pi, choose pairwise disjoint two-element sets Ai = {aiO, ail} 
and q ~ UAi . Let L = {q} U UAi and p defined as in Case 1. 

i i 
We define the following operation on L: 

Va E L, a· q = q. a = a, 

V(aik,au)EA;, aik.au={ q, 
ai,k+l, 

if k =1= £ 
if k = £ 

where k + f is calculated mod 2) and Vi =1= j aik . ajl = amn, where 
n = k +f(mod2) and m is such that Pm = L(Pi,Pk) - {Pi,Pk}. 

35. Theorem. With the above constructions, we have: 

1) (L,., q) is a loop; 

2) p is a special equivalence relation on L; 

3) (S', 0) ~ (Lip, *{q}). 
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Proof. We verify for the case N 2: 4. The case N = 3 is similar 
but simpler. 

1) First, we check that in the equality z = xV, z and any of x 
and y determines uniquely the other. 

It is immediate if q E {x, y, z}. 
Let x = aik, Y = ail and z = amn. If card{i,j, m} ~ 2, then 

i = j = m and the conclusion is immediate. 
Suppose i i= j i= m i= i. We have two possibilities: 

a) aik and amn are given. Notice that rii(m) increases mono­
tonically with j, so there exists a unique Pi E L(Pi' Pm) - {Pi,Pm}, 
rii(m) + k - 1 == n(modN - 1). Now, we can obtain, in a similar 
way, the unique h such that sii(h) = m. If i < j, we can obtain £ 
uniquely from h = k + £ - 1 (mod N - 1), and respectively, if i > j, 
from h = k+£(modN -1). 

b) ajl and amn are given. First, suppose j < m. We have 

i j ( ) = { P(j) - 1, if i < j 
r m P(j), if i > j. 

We seek i and k, which satisfy the equalities: rii(m) = n-k+1 
and [(sij(k + £ - 1) = m, if i < j) or (sij(k + £) = m, if i > j)]. 

Using the definition of rii(m) and the fact that P(j) = m(j), 
we obtain: 

if i < j, k = n - m(j) + 2, respectively 
if i > j, k = n - m(j) + 1, 

whence, sii(n - m(j) + £ + 1) = m, for i < j and also for i > j. 
In the last equality, j, £, m and n are known and i is unknown 

and from this equality we obtain uniquely i. 
With this value for i, we obtain a unique solution for k. 
The case j > m is similar. 

2) It is sufficient to verify that for i i= j, AiAj is a union of 
(Ai, Aj)-projective equivalence classes Am. 
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Let the multiplication rule be: 

J.l : AxAj ---t U Am 
m\t{i,j} 

From the equalities (r), we obtain the map J.l is an onto map. 
Now, we have to only show that each Am (for m ~ {i,j}) 

is (A, Aj)-projective, that is we have to check that Vaik E Ai, 
3aj£ E Aj , such that aikaj£ E Am and symmetrically. This can be 
easily obtained from (r). 

3) An isomorphism between (S', 0) and (L / p, *, { q}) is given 
by: 

f:S'---tL/p, f(a) = { {q}, ~f a:e 
Ai, If a - Pi E S. 

36. Remark. The paper [43} presentes a relationship between 
multivalued loops and representations of atomic structures of cer­
tain 3-dimensional cylindric algebras. 



Chapter 2 

Graphs and Hypergraphs 

Since the middle of the last century, Graph Theory has 
been an important tool in different fields, like Geometry, 
Algebra, Number Theory, Topology, Optimization, Opera­
tions Research, Median Algebras and so on. To solve new 
combinatorial problems, it was necessary to generalize the 
concept of a Graph. 

The notion of a "hypergraph" appeared around 1960 
and one of the initial concerns was to extend some classical 
results of graph theory. 

Hypergraph Theory is an useful tool for discrete opti­
mization Problems. 

A very good presentation of Graph and Hypergraph 
Theory is in C. Berge [442] and Harary [448]. 

In this chapter, we have presented some important con­
nections between Graph, Hypergraph Theory and Hyper­
structure Theory. 

§ 1. Generalized graphs and hypergroups 

The following results on generalized graphs and hypergroups have 
been obtained by M. Gionfriddo. 

1. Definition. Let V ~ G, V:f 0, where G is a finite non-empty 
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set and f: G ~ P(G), such that: 

(i) G - V =f: 0; 

(ii) V x E V, f(x) = {x}; 

(iii) Vy E G - V, f(y) E P(V) and If(y)1 = n+ I for some E ]N*. 

The pair (G, f) is called a (generalized) graph on G of dimension n 
or an n-graph. 

Every x E V is called a vertex of (G, f) and each y E G - V is 
called an edge of (G, f). 

A connected graph is a graph (G,J) such that V (x, y) E V2, 
there exists E = {el, e2, ... , eh} ~ G - V, with x E f(el), y E f(eh) 
and Vi E {I, 2, ... , h - I} = h-l, we have f(ei) n f(ei+1) =f: 0. 

Now, for a non-empty set M set 

1i(M) = {f : M ~ P*(M) I U f(x) = M} . 
xEM 

2. Theorem. Define on 1i(M) the following hyperoperation *: 

V(h,k) E 1i(M)2, 

h*k = {R E H(M) I Vx E M, £(x) ~ U h(Y)}. 
YEk(x) 

Then (1i(M), *) is a regular hypergroup. 

Proof. Let us verify first the associativity law, that is 

First of all, we check that Vx E M, V(h,k,£) E 1i(M)3, we have 

u (U h(Y») = U h(y). 
tEI(x)· YEk(t) yE U k(t) 

tEl(z) 
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On the other hand, we have: 

u E U (U h(Y)) 
tEl(x) YEk(t) 

===? (3tl E f(x) : U E U h(Y)) ===? 
yEk(tt) 

On the other hand, 

===? U E U h(y). 
yE U k(t) 

tEt(",) 

U E U h(y) ===? (3YI E U k(t) : 
yE U k(t) 

tEi(z) 
tElex) 

U E h(YI)) ===? (3tl E f(x) : YI E k(tl) and 

U E h(YI)) ===? U E U h(y) ===? U E U ( U h(Y)) . 
yEk(tl) tElex) yEk(t) 
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For any (h, k) E 1i(M)2, we denote by ah,k the element of h * k, for 
which 

We have: 

"Ix E M, ah,k(x) = U h(y). 
yEk(x) 

===? (3UI E k * f : U E h * UI) ===? 

===? (3UI E k * f: V x E M, u(x) ~ U h(Y)) ===? 
yEUl(X) 

===? ("IX E M, u(x) ~ U h(y) = U (U h(Y))) ==> 
yE U k(t) tElex) yEk(t) 

tEt(",) 

===? (V x E M, u(x) ~ U ah,k(t)) ===? 
tElex) 

===? U E ah,k * f ===? U E (h * k) * f. 
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Conversely, 

u E (h * k) * £ ===? u E U v * £ ===? (3VI E h * k : u E VI * £) ===? 

===? ( 3VIEh*k:VXEM, u(x)<;;;; U VI(t)<;;;; U (u h(Y») = 
tEl(x) tEl(x) YEk(t) 

U h(Y») ===? (vx E M, u(x) <;;;; U h(Y») ===? 
yE U k(t) yEak,l(X} 

tEl(,,) 

===? u E h * ak,l ===? u E U h * V = h * (k * f). 
vEhl 

Therefore, V(h,k,£) E 1i(M)3, 

h * (k * £) = (h * k) * £. 

Now, we shall prove that 1i(M} has at least an identity and any 
element has an inverse. 

Let I = {i E 1i(M) I Vx E M, x E i(x)}. If i E I, then 
Vh E 1i(M), Vx E M, 

h(x) <;;;; ( U i(Y») n ( U h(Y») , 
YEh(x) YEi(x) 

hence h E h * i n i * h. 
Therefore, I is the set of identities of 1i(M). 
Now, let h E 1i(M) and Ih = {k E 1i(M) I "Ix E M, k{x) = 

= {y E M I x E h(y)}}. If k E I h , then 

VxEM, xE n h(y)n n k(y). 
yEk(x) yEh(x) 

If i E I is such that i( x) = {x}, V x E M, then i E h * k n k * h. 
Therefore 

V hE 1i(M), 3Ih E P*(1i{M» : V k E I h , h * k n k * h nI =10, 
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that is any element h E H(M) has an inverse. 
From this, we also obtain the reproductibility of (H(M), *). 
Indeed, \:I i E I, \:I h E H(M), we have h E i * h. Moreover, for 

any k E H(M), 3i E I, 3k' inverse of k, such that i E k* k'. Then, 
there is u E k' * h, such that h E k * u. 

Similarly, there is v E H(M) such that h E v * k. • 

3. Theorem. 

(i) For every M -# 0, the hyper group (H(M), *) is left-reversible; 

(ii) For IMI > 1, (H(M),*) is not right-reversible. 

Proof. i) Let (f, h, k) E H(M)3. If f E h * k and u E H(M) is such 
that \:I x E M, u(x) = M, then 

\:Ix E M, k(x) ~ U u(y) = M, 
YEl(x) 

hence k E u * f. 
ii) We shall prove that there exist (h, k,f) E H(M)3 and 

Xo E M, such that f E h * k and for every inverse v of k, 
h(xo) ~ U fey)· 

yEV(xo) 

Let a, b be two distinct elements of M. Let (h, k, f) E H(M)3 
be such that: 

h(a) = {b}, h(b) = a and \:Ix E M - {a,b}, hex) = M; 
k(a) = {b} and \:Ix E M - {a}, k(x) = M and 
\:I x E M, f(x) = {a}. 

Since U hex) = M and f E h * k if and only if (f(a) = {a} and 
xEM 

\:I x E M - {a}, f(x) ~ M), it follows that f E h * k. 
Moreover, since for every inverse v of k, 

f*v = {g E H(M) I \:Ix E M, g(x) ~ U fey) = {a}} 
YEv(x) 

and h(a) = {b}, 

we have h ¢: f * v. • 
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4. Definition. A subgraph of (G, 1) is a graph (G, 1) such that 

G C;; G and J = f / G. 

5. Definition. Let (GI, h) and (G2 , Jz) be two graphs. The map 
1/J : GI -+ P*(G2 ) is called a generalized multihomomorphism (or, 
simply a GMH) from (Gt, h) to (G2 , h) if 

(i) V x E GI , U 1/J(Y) = U h(Y); 
yE/I(x) yE..p(x) 

(ii) Vy E GI - Vi, if h(Y) = h(Y) U {y} and Y = U 1/J(t), 
tE/I(y) 

then (Y,h/Y) is a connected subgraph of (G2 ,Jz). 

6. Definition. Let (GI , h) and (G2 , h) be two graphs. The map 
cp : Vi -+ P*(lt2) (where ViE {1,2}, Vi is the set of vertex of 
(Gi , fi» is called an Ore multihomomorphism (or simply an OMH) 
from (GI,!I) to (G2,!2) if V X C;; VI, X =10, such that 3y E GI - Vi 
with h (y) = X, the set U cp( t) is the set of vertices of a connected 

tEX 
subgraph of (G2 , h). 

Let (G, j) be a connected graph. Let H G = {1/J I 1/J is a 

GMH in (G, j), U1/J(x) = G, Vy E G - V, U 1/J(t) > I} and 
xEG tEf(y) 

0: H'/; -+ P*(HG) defined as follows: 

V(h,k) E H,/;, hok = {c E HG I Vx E G, C(x) C;; U h(Y)}. 
yEk(x) 

Let KG = {cp I cp is an OMG in (G,1), U cp(x) = V, Vy E G - V, 
xEV 

U cp(t) > I} and *: K'/; -+ P*(KG) defined as follows: 
tEf(y) 

V(h,k)EKb, h*k={CEKGIVXEV, C(x)C;; U h(Y)}. 
yEk(x) 
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7. Theorem. 

(i) (He, 0) is a regular hypergroup; 

(ii) (Ke, *) is a regular hypergroup. 
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Proof. i) For any (h, k) E H'/;, let ah,k be the map defined as 
follows: 

v x E G, ah,k(x) = U hey)· 
YEk(x) 

Since Vy E G - V, U k(t) > 1, we obtain that ah,k E He· 
tEf(y) 

Moreover, we have ah,k E hok. So, V (h, k) E H'/;, we have hok i O. 
Now, let us verify the associativity law. 
We have V (h, k, C) E Hl;, 

U E (h 0 k) 0 C :::=:} u E h 0 ak,! ==::;. u E h 0 (k 0 C) and 

v E h 0 (k 0 C) :::=:} v E ah,k 0 C ==::;. v E (h 0 k) 0 C. 

Finally, let us notice that if i E 'H( G) is such that V x E G, we have 
that i(x) = x, then i is an identity GMH and i E He. 

lf J1. E 'H(G) is such that V x E V, J1.(x) = V and V x E G - V, 
J1.(x) = G, then J1. E He and for any'lj; E He, we have i E 'lj;oJ1.nJ1.o'lj;. 

ii) Similarly, for any (h, k) EKe, let bh,k be the map defined 
as follows: 

V x E V, bh,k(X) = U hey)· 
YEk(x) 

Since Vy E G - V, U k(t) > 1 it follows that bh,k E Ke and 
tEf(y) 

bh,k E h * k. 

Now, let us verify the associativity law. We have 

U E (h * k) * C:::=:} u E h * bk,l :::=:} u E h * (k * C) 

v E h * (k * C) :::=:} v E bh,k * C :::=:} v E (h * k) * C. 
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Finally, Vx E V, if i{x) = {x}, then i E KG and Vh E KG, 
hE i * h n h * i. If Vx E V, "l{x) = V, then "l E KG and V hE KG, 
i E "l * hn h * "l. 

8. Theorem. There exists a homomorphism from (HG, 0) to 
(KG, *). 

Proof. Let F : HG ---* KG defined as follows: V'ljJ E HG, F{'ljJ) = 
= 'ljJ/V. We have 'ljJ/V E KG. 

For any (h, k) E H,/;, if'P E F{h 0 k), then there exists 'ljJ E HG 
such that F{'ljJ) = 'ljJ/V = 'P and V x E G, 'ljJ{x) c U h{y). For 

YEk(x) 

any x E V, we have 

'P{x) = 'ljJ{x) ~ U h{y) = U (h/V){y), 
YEk(x) yE(k/V)(x) 

whence cp E F{h) * F{k). • 

§2. Chromatic quasi-canonical 
hypergroups 

The quasi-canonical hypergroups were utilised by St. Comer to 
establish connections with edge-coloured graphs. 

Let C be a non-empty set of colours and € an involution of C, 
that means [0 [= Ie. 

Let V be a set of vertex. A pair (x, y) E V 2 with x =I- y is 
called an edge. For any a E C, let Ca be a binary relation on V. 

A system V =< V, Ca >aEe is called a colour scheme if the 
following conditions are satisfied: 

1° {Ca I a E C} is a partition of {(x,y) E V 2 1 x =I- y}, 

2° Va E C, Ct:(a) = {(y,x) I (x,y) E Cal; 



APPLICATIONS OF HYPERSTRUCTURE THEORY 63 

3° Va E C, Vx E V, 3y E V : (x,y) E Ca , that means each 
vertex has an edge of each colour emanating from it; 

4° if a, b, c E C, then the following implication holds: 

where "0" is the composition of relations. 

9. Remark. Va E C, Ca is thought of as the set of directed edges 
with colour a in the complete directed graph with no loops on the 
set V. 

The involution £ guarantees that the colour assigned to an edge 
(y, x) depends only on the colour assigned to the reverse directed 
edge (x, y) and not on the particular (x, y), so we can say that 
colours a and £ ( a) are paired. 

If Va E C, £(a) = a, that means the colours are self-paired, 
then the colours schemes can be pictured by colouring the edges of 
undirected graphs. 

A partial colour scheme is a system V =< V, Ca >aEC, which 
satisfies only the conditions 1° and 2°. 

Notice that two special cases of the notion of colour scheme 
were been widely studied: 

1. homogeneous coherent configurations (see D.G. Higman [449]), 
which are studied via matrix algebra, because of so called in­
tersection numbers. An intersection number is the number of 
(a, b)-paths from x to y, where (x, y) ECe . In a homogeneous 
coherent configuration, a such number is independent of the 
choice of (x, y) E Ce. 

2. association schemes, which are homogeneous coherent confi­
gurations with £ (a) = a, for all a E C. Associative schemes 
have a large literature. We mention only Bose and Mesner 
[30]. 
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Some of the important association schemes are those associated 
with distance-transitive and strongly regular graphs (Biggs [444], 
Cameron and Van Lint [33]). 

Let us associate now a quasi-canonical hypergroup with a colour 
scheme V =< V, Ca >aEC. 

Let e tf. C. We shall consider the following colour algebra on V: 

Av =< C U {e}, 0, -1, e >, 

where the inverse is defined by a-I = £(a), for a E C and e-1 = e. 
The product is defined by: aD e = e 0 a = a, for a E C U {e}, 
V(a,b) E C2 , b =1= a-I, aDb = {c E C I Cc C Ca 0 Cb } and Va E C, 
a 0 a-I = {c E C I Cc C Ca 0 Ca-l} U {e}. It results the following 

10. Proposition. Av is a quasi-canonical hypergroup with the 
unit e. 

11. Definition. A quasi-canonical hypergroup is called chromatic 
if it is isomorphic to Av. 

In the following, we shall present an important example of 
chromatic quasi-canonical hypergroup. 

12. Definition. Let p be an equivalence relation on a quasi­
canonical hypergroup (H, D). 

1. p is called a full conjugation on H if the following implications 
hold: 

xpy ==} X-I py-\ 

z E XDy and ZpZ' ==} :3(XI ,y') E H2, 
such that x' px, y' py and Zl E x' 0 V'. 

2. p is called a special conjugation if 1) holds and, moreover, xpe 
implies x = e. 

13. Theorem. (see Comer [46]) Let (H, D) be a quasi-canonical 
hypergroup and p an equivalence relation on H. Then 
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P is a full conjugation on H if and only if ( {Px IXEH}, .) is a quasi­
canonical hypergroup, called a (double) quotient of H and it is de­
noted by HI! p. Notice that "." is the induced operation on the set 
of p-classes (that is pz E Px' Pv {:::=:::;> :3x', :3y' : xpx', ypy', z E x' 0 y') 

Let us denote by Q2 (Group) the set of all quasi-canonical 
hypergroups isomorphic to a double quotient of a group. 

14. Examples The following are full conjugations on a group G: 

1. any congruence relation p on G is a full conjugation and G I! p 
is just the usual quotient group; 

2. if H is a subgroup of G and PH C GxG is defined as follows: 

XPHY {:::=:::;> HxH = HyH, 

then PH is a full conjugation on G. 

3. if K is a group of automorphisms of G and P is defined as 
follows: 

xpy {:::=:::;> :30' E K : y = O'(x), 

then p is a special conjugation on G. 

Utumi [396] used special conjugations of groups to obtain im­
portant examples of cogroups. 

We have: 

15. Proposition. If G is a group and p is a full conjugation on 
G, then Pe is a subgroup of G. 

We point out that the double quotient of groups are related to 
chromatic quasi-canonical hypergroups. 

16. Theorem. Every quasi-canonical hypergroup in Q2(Group) 
is chromatic. 

Proof. Let p be a full conjugation on a group G. Then Pe = H is 
a subgroup of G. 



66 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Set C = {Px I x E G, Px =I H}, V = {H x I x E G}, Va E C, 
£(a) = a-I and Ca = {(Hx, Hy) E V 2 I xy-l E a}. 

It can be easily verified that V =< V, Ca >aEC is a colour 
scheme, which is usually called the regular colour scheme represen­
tation of Gil p. In order to verify the implication: Ce n Ca ° Cb=l0 
==} Ce C Ca OCb, we show that c Ea· b (in Gil p) ¢:::::} Ce ~ Ca oCb 
for any a, b, c E C. 

Indeed, if C Ea· b (in Gil p) and (Hu, Hv) E Ce then there 
exist rEa and s E b, such that uv-1 = rs. Denote sv by z. Then 
(Hu,Hz) E Ca , since uz-1 = UV- 1S-1 = rEa and (Hz,Hv) E Cb, 

since zv-1 = s E b. So, (Hu,Hv) E CaoCb and hence Ce C CaoCb. 
Conversely, if Ce C CaoCb and x E c, then we have (Hx, H) E Ce, 
so there exists z E b such that (Hx, Hz) E Ca , that is xz-1 E a, 
whence x = (xz- 1)z Ea· b. Therefore, c ~ a . b in Gil p. Let 
< C u {eo}, 0, -1, eo > the quasi-canonical hypergroup associated 
with the colour scheme V =< V, Ca >aEC . 

Finally, we have only to notice that cp : Gil p ---t C U {eo}, 
cp(Px)=Px and CP(Pe) = eo (eo is the identity of C U {eo}) IS an 
isomorphism. _ 

§3. Hypergroups induced by paths 
of a direct graph 

The following results on graphs and hypergroups are due to I.G. 
Rosenberg. 

These hyperoperations have also been considered by P. Corsini. 

17. Definition. We say that G = (V, E) is a directed (simple and 
loopless) graph if V is a nonvoid set and E a binary areflexive rela­
tion on V (i.e., E ~ V 2 = VxV and (v,v) E p for no v E V). For 
(x, y) E V 2 a path from x to y or an x - y path, is a finite sequence 
< zo, ... , Zm > over V, such that 

(i) x = Zo, Y = Zm 
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(ii) for all 0 ~ i < j ~ m, Zi = Zj ==> i = 0, j = m, 

(iii) (Zi, Zi+1) E E for all i E {O, ___ , m - I} 

For every x E V we consider (x) is an x - x path_ 

We assume throughout that G is connected in the sense that 
for any (x, y) E V 2 , there is at least one x - y path_ 

Let 01 : V 2 --t P* (V) be defined as follows: 'V x E V, X 01 X = 
= {x} and 'V (x, y) E V2, X :f y, XOlY is the set of all vertices on all 
x - Y paths, that is u E X 0lY if there is a x - Y path < zo, ---, Zm > 
and there is 0 ~ i ~ m such that u = Zi-

Let 02 : V 2 --t P* (V) be defined as follows: 'V x E V, X 02 X is 
the set of all vertices on all x - x paths and 'V (x, y) E V 2 , x :f y, 
X02Y = XOlY_ 

18. Definition. We say that a vertex set B separates a vertex set 
A from a vertex set C (in that order) if every path starting from 
A and ending in C meets B _ If A is a singleton {a} we say that B 
separates a from C and similarly B separates A from c whenever 
C = {c}_ 

Let us introduce the following property (a) of (V, Oi) (where 
i E {I, 2}), which consists in two parts: (al) and (a2)- There are: 

(al) If < zo, ___ , Zm > and < wo, ---, Wn > are paths and O~i<k~m 
and 0 < j < r < n are such that the following conditions 
hold: 

(1) zo:f Zm and Wo :f Wn if i = 1; 

(2) Zk = Wj, Zi = Wn while the sets {Zi+b ---, Zk-l} and 
{Wj+l' ---, wn-tl are disjoint; 

(3) {wr+1' ---, Wn-l, Zi, -__ , zm} separates the set Wo ° Zo from 
W r ; 

(4) each of the sets {zo, ___ , Zk, Wj+1, ___ , Wr-l} and {wo, ---, Wr-l} 

separates Wr from Zm; 
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then there is y E Zo 0 Wo such that Wr is on a y - Zm path. 

(a2) If < Zo, ... , Zm > and < Wo, ... , Wn > are paths and O:5:k<i:5:m 
and 0 < r < j < n are such that the following conditions 
hold: 

(1) Zo # Zm and Wo # Wn if i = 1; 

(2) Zi = Wo, Zk = Wj while the sets {Zk+1' ... , Zi-I} and 
{WI, ... , Wj-I} are disjoint; 

(3) {ZO, ... , Zi, WI, ... , wr-d separates Wr from Zm 0 Wn; 

(4) both sets {wr+I, ... wn} and {wr+l, ... ,Wj,Zk+1"",zm} 
separates Zo from W r , 

then there is y E Zm 0 Wo such that Wr is on a Zo - Y path. 

We say that G satisfies (a) if G satisfies both (al) and (a2). 

19. Theorem. The following statements are equivalent for a di­
rected connected graph G and the associated hypergroupoid < V, 0i > 
(i E {1,2}): 

(1) (V,Oi) is a semihypergroup; 

(2) (V,Oi) is a hypergroup; 

(3) G satisfies (a). 

Proof. We shall denote (V,Oi) by (V, 0). 

(1)===>(2). Let (V,o) be a semihypergroup and (x, y) E V 2 

be aribtrary. Notice that y E (x 0 y) n (y 0 x) and consequently 
V ~ (x 0 V) n (V 0 x). Clearly, x 0 V ~ V :=) V 0 x and so V x E V, 
x 0 V = V = Vox. Therefore, (V, 0) is a hypergroup. 

(2)===>(3). Let (V,o) be a hypergroup. To prove (al) let 
(zo, ... , zm) and (wo, ... , wn) be two paths satisfying the conditions 
(1) and (2) of (al)' Clearly, Wn = Zi E ZOOZm and Wr E woo(ZOozm). 
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Since (V, 0) is a hypergroup, Wo 0 (Zo 0 Zm) 
= (wo 0Zo) OZm. Thus Wr E (wo ozo) OZm and so there is y E WOOZo 
such that Wr E yo Zm proving the conclusion of (at). Next suppose 
that the condition (2) from (0:2) holds. Then Wo = Zi E Zo 0 Zm; 
hence Wr E (zo 0 zm) 0 Wn = Zo 0 (zm 0 wn) which is the conclusion 
of (0:2). 

(3)=?(1). Let (0:) hold. 

1. Let (x, y, z) E V 3 • We shall verify that 

(x 0 y) 0 Z :) x 0 (y 0 z) 

1) First, suppose that either y -; Z or (V, 0) = (V,02) that is 
y 0 y is the set of all y - y paths. Let u E x 0 (y 0 z) be 
arbitrary. Then there exist an y - Z path < Zo, ... , Zm >, 
o ~ t ~ m and an x - Zt; path < Wo, ... ,Wu > such that 
U = Wr for some 0 ~ r ~ v. Denote by q the least index such 
that Wq E {zo, ... , zm} = Z and let Wq = Zh. 

1° First, suppose that r ~ q. We claim that < wo, ... , wq, Zh+b ... , 
Zm > is a path. Indeed, < Wo, ... , Wq > and < Zh, ... , Zm > are 
paths and {wo, ... wq} is disjoint from {Zh+b ... , zm} on account 
of the minimality of q. Thus U = Wr E x 0 Z ~ (x 0 y)oz so, 
in this case, the inclusion (*) holds. 

2° Let us consider now r > q. If u E Z then u E yo Z ~ (x 0 y) 0 Z 
and the inclusion (*) holds. Thus we may assume that u <t Z. 
Then there are q ~ j < r < n ~ v and 0 ~ i < k ~ m such 
that 

We have two cases: 

a) Let Wj=Zi and Wn=Zk. Then «:'0, ... , Zi, Wn-b Zk, ... , zJ is 
an y - Z path, hence u E yo Z ~ (x 0 y) 0 z. 
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b) Thus let Wj = Zk and Wn = Zi. We try to take advantage 
of the following three paths. 

b1) The u - Z path A = (wn ... , W n -1, Zi, •.. , zm). If the 
set Y = {wr+l, .... , Wn-l, Zil ... , zm} does not sepa­
rate X = x 0 y from u = Wn then there is t E x 0 Y 
such that the vertex Wr is on a t - Wr path Jl sharing 
only Wr with A, hence u E to Z C (x 0 y) 0 Z and 
the inclusion (*) holds. Thus we can assume that Y 
separates x 0 y from u. 

b2) We try to use the y-u path {ZO, ... , Zk,wj+h ... ,wr-~· 
If the set U = {zo, ... , Zk, Wj+1, ... , wr-d does not 
separate Wr from Zm, then u = Wr E yoz ~ (xoy)oz. 
Thus we can assume that U separates Wr from Zm. 

ba) Finally we try to use the x - u path (wo, ... , wr ) . If 
V = {wo, ... , Wr-1} does not separate Wr from Zm, 
then u = Wr E x 0 Z ~ (x 0 y) 0 z. Thus we may 
assume that V separates Wr from Zm. 

b4 ) In the remaining case the condition (a1) assures that 
u E (xoy) oz. 

2) Let (V, 0) = (V, 01) and y = z. Then x 0 (y 0 y) = x 0 y c 
c (x 0 y) 0 y as required. 

II. Let (x,y,z) E V3 . We shall prove that 

(x 0 y) 0 Z ~ x 0 (y 0 z) 

1) First, suppose that y i= Z or (V, 0) = (V, 02). Let u E (xoy)oz. 
Then there are an x - y path (zo, ... , zm), 0 ~ t ~ m and a 
Zt - Z path (wo, ... , wv ) such that there is 0 ~ r ~ v for 
which u = W r . Denote by q the greatest index such that 
Wq E Z = {Zo, ... ,zm} and let Wq = Zh. 

1° First, suppose that r ;:::: q. Since (Zo, ... , Zh, wq+l, ... , wv ) is an 
x - Z path, we obtain u = Wr E x 0 Z ~ x 0 (y 0 z) and the 
inclusion (**) is proved. Thus let r < q. If u E Z then again 
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u E xoy ~ xo(yoz). Thus we may assume that u tj. Z. Then 
there are 0 ::; j < r < n ::; q and 0 ::; i < k ::; m such that 
(X) holds. 

a) Let Wj = Zi and Wn = Zk· Then (zo, ... , Zi, Wj+l, ... , Wn-b 

Zk, ... , zm) is an x - Z path and so u = Wr E x 0 Z C 
ex 0 (y 0 z). 

b) Thus let Wj = Zk and Wn = Zi. We try to use the fol­
lowing three paths. 

b I ) The path A = (zo, ... , Zk, WI, ... , W r ). If the set Y = 

= {Zo, ... , Zk, WI, ... , W r - d does not separate Wr from 
Zm 0 W n , then there is W E Zm 0 Wv = Y 0 Z such 
that Wr is on a Zo - W path; consequently u = Wr E 
E x 0 (y 0 z). Thus we may assume that Y separates 
Wr from Zm 0 W m . 

b2 ) We try to use the path (wr , ... , wn ). If Y = 
= {Wr+b ... , wn } does not separate Zo from Wr, we 
have Wr Ex 0 Z ~ x 0 (y 0 z). Thus we may assume 
that Y separates Zo from W r . 

b3) Finally we try to use the path (wb··.,W.i> ZHb ... , zrJ. 
If A = {wr, ... , Wj, zHb ... , zm} does not separate Zo 

from Wr, then u = Wr E Y 0 Z ~ (y 0 z) 0 x. 
In the remaining case the condition (U2) yields 
u E (y 0 z) 0 x. 

2) Finally let y = Z and (V, 0) = (V, 01). Then (y 0 y) 0 x = 
= y 0 x ~ y 0 (y 0 x). This concludes the proof. _ 

§4. Hypergraphs and hypergroups 

We consider a general hypergraph f, and prove that it is always pos­
sible to construct from it a sequence of quasi-hypergroups Qo(f), 
QI(r), ... , such that if Qk(f) = Qk+l(f) for some k, then there 
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exists s ::; k such that Qs(f) is a join space. Conversely to any hy­
pergroupoid Q satisfying (1), (2) and (3) of the proposition below, 
it is associated a hypergraph f(Q) such that Qo(f(Q)) = Q. 

The following results have been obtained by P. Corsini. 

20. Definition. Let f = (H; {Ah} be a hypergraph, i.e. Vi, 
Ai E P(H) - {0}; UAi = H; Vx E H. Set E(x) = U Ai. The 

i xEAi 
hypergroupoid Hr = (H; 0) where the hyperoperation is defined by 

V(X,y)EH2 , xoy=E(x)UE(y) 

is called a hyper graph hypergroupoid or an h.g. hypergroupoid. 

21. Theorem. The hyper groupoid Hr satisfies for each 
(x, y) EH2: 

(1) xoy=xoxUyoy; 

(2) x E x 0 x; and 

(3) y E x 0 x ¢=> x E yo y. 

22. Theorem. A hypergroupoid Hr satisfying (1), (2), (3) of the 
Theorem 21 also satisfies 

(4) xoy::> {x,y}, 

(5) x 0 y = yo x, 

(6) xoH=H, 

(7) {H;{XOX}xEH} is a hyper graph, 

(8) (x 0 x) 0 x = U z 0 Z, 

xEzoz 

(9) (xox)o(xox)=xoxox. 
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Proof. It is enough to prove (8) and (9). 

(8) We have (xox) ox = U zox. Then from (1), xoxox = 
zExox 

U (z 0 z U x 0 x); now from (2) it follows x 0 x 0 x = U z 0 z, 
zExox zExox 

and finally from (3) we obtain (8). 

(9) We have: 

(xox)o(xox) U aob= U «aoa)U(bob))= 
{a,b}Cxox {a,b}Cxox 

= U a 0 a = U a 0 a = x 0 x 0 x. 
aExox xEaoa 

• 
23. Remark. It is clear from (5) and (6) of Theorem 22, that an 
h.g. hypergroupoid is a commutative quasihypergroup. 

24. Theorem. A hypergroupoid (H; 0) satisfying (1), (2) and (3) 
of Theorem 21 is a hypergroup if and only if the following condition 
is valid: 

(7) V(a,c)EH2, cococ-cocCaoaoa. 

Proof. We prove the implication "~". For (1) it is enough to 
verify the associativity. We have: 

V(a,b,c)EH3 , (aob)oc= (aoaUbob)oc= (aoa)ocU(bob)oc, 

ao(boc) = (boc)oa = (bob)oa U (coc)oa. 

Moreover, 

(aoa)oc = U uoc = U «uou) U (coc)) = 
uEaoa uEaoa 

= Coc U ( U uou) = COC U aoaoa (by Theorem 22, (8)). 
uEaoa 



74 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Then we also have (bob)oc = bobob U coco 
Therefore (aob)oc = aoaoaUbobobUcoc and moreover ao(boc) = 

= (boc)oa = bobob U cococ U aoa. 
Set P = aoaoa U coc, Q = cococ U aoa. 
It is clear that (aob)oc = bobob UP, ao(boc) = bobob U Q and 

also P = (aoaoa - aoa) U aoa U coc. By the hypothesis (7) we have 
aoaoa - aoa C cococ. Since eoe C eoeoe, it follows P c Q. In a 
similar way the inverse inclusion is proved and then the implication 
follows. 

We prove the implication" ===?". From the associativity it fol­
lows: \I (a, c) E H2, (aoa)oe = ao(aoe). 

From above we have also: (aoa)oe = eoe U aoaoa, ao(aoe) = 

= U aov = U (aoa U vov) = aoa U ( U vov) U ( U vov) = 
vEaoe vEaoe vEaDa vEeDe 

= aoaoaUeoeoe (by Theorem 22, (9», consequently eoeoe-eoe C 
C a 0 a oa. • 
25. Corollary. If a hypergroupoid satisfies (1), (2) and (3) of 
Theorem 21 and the condition: 

( 7') \Ix, xoxox=xox, 

then it is hypergroup. 

26. Definition. An associative h.g.-quasihypergroup is called a 
h.g.-hypergroup. 

27. Theorem. If the hyper group Hr = (H; 0) satisfies (1), (2), 
(3) of Theorem 21, then it is a join space. 

Proof. It is sufficient to prove that the following implication is 
satisfied: 

x/y n z/w =1= 0 ===? x 0 w n yoz =1= 0, 

where x/y = {z I x E zoy}. We have: 

u E x/y n z/w -¢::=:> [x E uoy and z E uow]. 
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Moreover, x E uoy ~ x E uou U yay and z E uow {:=::? 

z E uou U wow. Four cases are possible: 

(1) If x E uou, z E uou, then u E xox n zoz and therefore 
u E xownyoz. 

(2) If x E uou, z E wow, it follows w E zoz, hence w E xownyoz. 

(3) If x E yay, Z E uou, then y E xox, it follows y E xow n yoz. 

(4) If x E yay, Z E wow, then w E zoz it follows w E xownyoz . 

• 
28. Theorem. Let (H; 0) be a quasihypergroup satisfying (1), (2), 
(3) of Theorem 21. Then there is a hyper graph r such that (H;o) 
is the h.g.-quasihypergroup associated with f. 

Proof. Let f be the hypergraph (H; {x, y }xEH,YEXOX). 

Then for all z in H, we have: 

E(z)= U {x,z} = U {x,z}=zoz. 
zExox xEzoz 

Then for all (x, y) in H2, xoy = xox U yoy = E(x) U E(y), so the 
quasihypergroup < H; ° > is the h.g.-hypergroupoid associated 
with the hypergraph f. • 

29. Theorem. Let (H; 0) be a hypergroup satisfying (1), (2), (3) 
of Theorem 21, Ho = (H; 00), HI = (H; 01), ... , Hk = (H; Ok)' ... the 
sequence of the hypergroupoids obtained by setting V(x,y) E H2, 
x 00 Y = xoy, V k 2:: 0, x 0k+l x = x Ok X ok x, x 0k+l Y = x 0k+l 
xUy ok+! y. Then Vk 2:: 0, 

(a) The hyperoperation Ok satisfies (1), (2), (3) of Theorem 21. 
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Proof. (0:') We prove (0:') by induction on k. Let us suppose that 
Ok satisfies (1), (2), (3). We prove that the same happens for Ok+!. 

(1) is satisfied by definition. 
(2) x E x Ok X C X ok X ok X = x ok+! x by the inductive 

hypothesis. 
(3) if Y E x Ok+! x = x ok X ok x, then, by the induc­

tive hypothesis, there is Z E X Ok x such that y E Z Ok X = 
= Z ok Z U X ok x. If Y E X ok x, then, by the inductive hypo­
thesis x E y Ok Y C Y ok+! y. If not, we have y E Z Ok Z from 
which Z E Y Ok y, but we also have x E Z Ok Z and therefore, 
by Theorem 22, (8), x E (y Ok y) ok (y ok y) = Y ok Y ok Y = 

= Y °k+l y. 
({3) For any X C H 

XoX= U YOZ= U (yoyUzoz)= Uxox. 
(y,z)EXXX (y,z)EXXX xEX 

Then, for any Xc H, by Theorem 22, (9) 

we have 

X oX oX C (X oX)o(X oX) = 

U yoy = U ( U YOY) = 
yEXoX xEX yExox 

= U (xox)o(xox) = 
xEX 

= U xoxox C XoXoX, 
xEX 

XoXoX = U xoxox. 
xEX 

Hence specifying X = x Ok X ok X = x ok+! x, by Theorem 22, (8) 

X Ok X ok X = U Z ok Z ok Z = 
zEX 

U Z 0k+l Z = (x ok+! x) ok+! (x ok+! x) = 
xExok+l X 

• 
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30. Theorem. Every hyper graph r = < H; {Ad> determines 
a sequence of quasi-hypergroups Qo = (H; 00), Ql = (H; 01), ... , 
Qm = (H; Om), ... such that V k ~ 1, Qk is an enlargement of Qk-l· 
If there exists s such that Q s = Q s+!, then Q Pr is a hypergroup for 
some integer Pr . 

Proof. Let V x E H, Eo(x) = E(x),. Ek+!(X) = U Ek(Y). We 
yEEdx) 

have a sequence of hypergraphs rk = {Ek(X) I x E H} and of the 
associated quasihypergroups Hk = (H; Ok), where V x E H, V k ~ 0, 
X Ok X = Ek(X). From Theorem 22, (8), and Theorem 29, (a), for 

V k ~ 0, V x E H, x Ok+! x = Ek+!(X) = x ok X ok x, and 

V (x, y) E H2, X Ok Y = X ok xU Y ok y. 

It is clear that x Ok+! x ::::> x ok x. 
Set m(x) = min{k I x ok+! x = x ok x}. 
We have that V s :2: m(x), x Os x = X 0m(x) x. To see this, it 

is enough to prove the following implication: x ok+! x = x ok X ===} 

X 0k+2 x = x ok+! x. Indeed, applying in turns Theorem 29, ({3)) and 
Theorem 22, (9) 

Now let 

XOk+2X = 

= (x Ok XOk x) odx ok XOkX) odx 0kX ok x) = 

= (x ok+! x) ok (x ok+! x) ok (x ok+! x) = 
= (XOk x) ok (x ok x) ok (XOk x) = 

= X ok XOkX) ok (XOk x) = (x ok+! x) Ok (XOk x) = 
= (x ok x) ok (XOkX) = XOk XOk X = X 0Hl X. 

P-y = max{m(x) I x E H}. 

It is clear that in (H;0Pr), VyEH, Y0PrY0PrY=Y0PrY and there­
fore, by Corollary 25, the hypergroupoid (fI; ° Pr) is a hyper­
group. _ 
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31. Definition. Denoting by S the class of semihypergroups, set 

ar = min{s E N* I Qs E S}. 

32. Examples. 

(1) If the edges are disjoint, i.e. i =I- j =} Ai n Aj =I- 0, then (r') 
is clearly satisfied and therefore the hyperproduct defined in 
(0) is associative. 

(2) Let f = {{I}, {I, 2}, {3, 4}}. Also in this case Hr satisfies (r') 
and therefore it is associative. 

(3) Let f' = {{I, 2}, {2, 3}}. We have 101 = {I,2} =I- 10101 = 
= {I, 2, 3}. Then Hr' does not satisfy (r'), bubs satisfies (r), 
and therefore by Theorem 24, 

Hp is a hypergroup. 

(4) Let f" = {{I,2},{2,3},{3,4},{4,5}}. It is (102)03 = 
= (1,2,3)03 = {I, 2, 3, 4}; 10(203) = {I}o{I, 2, 3, 4} = 
= {I, 2, 3, 4, 5}; and therefore Hr " is not associative. Remark: 
(101)0(101) = 10101 = {I, 2, 3}, ((101)01)01 = {I, 2, 3, 4}. 

(5) Letf= {{I,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8}}. We 
can check that 4024 = 5025 = H, 3°23 = H - {8}, V x E H, 
X 03 X = H. Then in < H; 02 > the condition (T) is satisfied 
and therefore, by Theorem 24, < H; 02 > is a hypergroup, 
different from the total hypergroup. Then it is clear that 
2 = ar < Pr = 3. 

33. Theorem. Let f be a connected finite hyper graph, let 
Xo, Xl> ... , Xn form a trail from Xo to X n , that is, Ail' ... , Ain exist such 
that {Xk-l, xd c Aik for all k E 1,2, ... , n and let Qo = Hr , ... , QFT, 
be the sequence of quasi-hypergroups associated with f. Then 
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(2) {Xi I 0 ~ i ~ n} C Xo Og(n) Xo, where 
g(n) = min{m E N I m 2:: log2(n)}. 

(3) There is m such that (H; om) is a total hypergroup. 
IfTr = min{m I (H; om) is total}, we have: 
ar ~ Pr = Tr ~ g(o(r), where o(r) is the diameter ofr. 
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Proof. (1) For k = 0 obviously {xi,xHd c Xi 00 Xi. Let us sup­
pose: V i, V s : 0 ~ s ~ 2k, XHs E Xi ok Xi, by induction we have: 

that is, V r : 0 ~ r ~ 2k+1, XHr E Xi Ok+! Xi. 

(2) follows directly from (1). 

(3) The first statement is a consequence of (2) and of the hy­
pothesis of connectivity. For the second, it is enough to remark that 
V (x, y) EH~ there is a path c from X to y of length d(x, y) ~ o(r). 
Then Vy E H, y E X 0g(d(x,y» X C X Og(6(r» X and therefore V X E H, 
X 0g(6(r» x = H. • 

34. Theorem. Let r be a connected finite hyper graph. Then we 
have: ar = Pr - 1. 

Proof. It is clear that ar ~ Pr - 1. Indeed, if we let k = Pr - 1, 
we have V x E H, X Ok X ok X = H and therefore 

whence, from Theorem 24, < H; Ok > is a hypergroup. Let us 
prove now that ar 2:: Pr - 1 that is, if Ok is associative, k 2:: Pr - 1. 

From Theorem 24, we have 

In order to prove that, V Z E H, Z E Y Ok Y ok Y we remark two cases 
can occur: 
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(1) Z Ok z-j.z ok Z ok z, then x E Z Ok+! Z exists such that x~z Ok z; 
it follows from (3) Theorem 21, Z ~ x Ok x but x E Z Ok+! Z implies 
Z E x Ok+! x, therefore Z E x Ok X ok X - X ok X C Y ok Y ok y. 

(2) Z Ok Z = Z ok Z ok Z. Since r is connected, Z Ok Z ok Z = H. 
If Z ~ Y ok+! y, it follows y ~ Z Ok+! Z, a contradiction, then 
Z E Y 0k+l y. 

Finally, y 0k+l Y = H. Since that is true for V y E H, it follows 
k + 1 2: Pr , i.e. ar 2: Pr - 1. -

35. Definition. Let r = {H; {Aj}j} be a hypergraph and let x, y 
be points of H. We set xRy if and only if either x = y or a trail 
exists form x to y, in other words R is the least equivalence relation 
which contains the relation R' defined by r, i.e. 

xR'y ~ 3j : {x,y} C A j . 

V x E H, let R( x) be the equivalence class mod R, determined by x. 

36. Definition. If r is any finite hypergraph, and Cl , C2 , ... , Cq 

are the connected components of r, set Tr = max{TC 11 :::; i :::; q}, 
V x E H, let r(x) be the connected component of r to which x 
belongs. 

37. Theorem. Let r be a finite hyper graph. Then V x E H, we 
have x Orr (x) X = R(x}. 

Proof. We prove the theorem by induction. It is clear that V x, 
x 00 xC R(x). Let us suppose x 0k-l xC R(x). 

We have x Ok x = X 0k-l X 0k-l x, thus, by Theorem 22, (8), if 
Z E x Ok x, there is y E X 0k-l x such that Z E Y 0k-l y, therefore 
zRyRx and then Vk, XOkX C R(x) whence the theorem. _ 

38. Theorem. Let r be a finite hyper graph. Then, V x E H, we 
have x orr X = R(x). 

Proof. It is immediate from Definition 36 and Theorem 37. _ 
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§5. On the hypergroup Hr associated 
with a hypergraph r 

81 

In the previous paragraph, we have seen that, given a hypergraph r 
on a set H, that is a family r = {A hEI of non empty subsets Ai of 
H such that UAi = H, we can associate with r, a hypergroupoid 

iEI 
defined by 

VXEH, XOIX= UAi' V(x,y), XOIy=xoIXUyoIY 
Ai::lX 

and a sequence of hypergroupoids «H; Ok »kEIN*, where 
for k > 1 

Now, we consider the case r = {(I, 2), (2,3), ... , (n - 1, n)}, then 
the case when r is connected and finally when r is a tree. 

The following results have been obtained by P. Corsini. 

Let "oi" be the hyperoperation defined V x E H, X 0i X = 
= {y I d(x, y) :::; i} (where d(x, y) is the graphic distance between 
x and y, that is the length ofthc shortest path between x and y), 

V(x,y) E H2, XCi Y = XCiX UYOiY. 

Let 8 be the diameter (if it exists) of r, that is 

8 = max{d(x,y) I {x,y} C H}. 

If we set xDky -¢:::::? x E Y Ok Y and xR;,y -¢:::::? d(x, y) :S i, we have 
Dk = R2k-1. So, X Ok Y = X 02k-1 y. Set I(n) = {I, 2, ... , n}. 

39. Proposition. V s E I(n), we have 

Dk(S) = S Ok S = {x I min{n, S + 2k- 1} 2:: x 2: max{I, S - 2k- 1}}. 
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Proof. We prove the Proposition by induction on k. Set k = 1. 
We have 

v S E I(n) - {l,n}, 

s01s={s-1,s,s+1}, 1011={1,2}, n01n={n,n-1}. 

It follows s 01 s 01 S = {s - 2, s - 1, s, s + 1, s + 2} if s - 2 2: 1, 
s + 2 :S n. Moreover, 

v s E I(n), s 01 s 01 S = {x I min{n, s + 2} 2: x 2: max{l, s - 2}}. 

Set V{a,;3} C I(n), Ir(o:,;3) = {x I min{n,o:} 2: x 2: max{l,;3}} 
and Tk(S) = S Ok S ok s. Now, set by inductive hypothesis: 

n-1(S) = If(s + 2k- 1, S - 2k- 1). 

Then by [[74J, Th. 5], we have 

Tk(S) = (n-1(S) 0k-1 n-1(S» 0k-1 n-1(S), 

whence 

n(S) = 
=(Ir(s+2k-~ s_2k- 1 )Ok-1 Ir(s+2k-~ s_2k- 1 )Ok-1 Ir(s+2k-~ s_2k- 1) 

It follows 

Tk(S) = If(s+2k- 1+2k- 2 , s_2k- 1_2k- 2 ) 0k-1 If(s+2k- 1, s_2k- 1). 

Finally, 

Tk(S) = If(s + 2k- 1 + 2k- 2 + 2k- 2 , S _ 2k- 1 _ 2k- 2 _ 2k- 2 ), 

• 
40. Corollary. V s E H, V k 2: 1, we have s Ok s = S 02k-1 s. 

Proof. Immediate. 

Let us suppose now that r is connected. 
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41. Theorem. 

a) If R; has not outer elements (see Def. 5, Chapter 3), then 
(H; 0d is a join space. Let r be a tree and let (H; 0d be a 
hypergroup. Then 

b) R; has not outer elements. 

c) We have 0 :S 2i. 

Proof. a) The hypothesis implies the condition 4 of Theorem 8, 
Chapter 3, to be vacuous. The conditions 1,2,3 of Theorem 8, 
Chapter 3, are satisfied because R; is reflexive. Therefore (H; 0i) 

is a hypergroup. From Theorem 3 [38], follows that < H; 0i > is a 
join space. 

b) Suppose to the contrary that x is outer. Then there exists 
h E H such that (h, x) fj. Rr Since r is a tree we have R; = R2i . 

Therefore (h, x) fj. R2i whence d( h, x) > 2i. Let 1f be the path 
between h and x. Let p be the element of this path at a distance 
2i from x. Then (p, x) E Rf - R;, hence R; does not satisfy 4 of 
Theorem 8, Chapter 3, and so (H; 0i) is not a hypergroup. 

c) It follows from the following remarks: 

1. If R is a relation on H, then R is transitive if and only if 
Va E H, we have aORaoRa = aORa. 

2. If R is a symmetric nontransitive relation on H, such that 
R C R2, then H R is a hypergroup if and only if V x E H, we 
have XORXORX = H. • 

42. Lemma. Let < H; r > be a connected graph, i E IN* and 
< H; 0i > the associated hypergroupoid. Then V (a, b, c) E H 3 , we 
have 

(aoiboic) = K'(a,b,c) = 
= {A I d(a,'x) :S 2i} U {t.L I d(b, f.L) :S 2i} U {v I d(c, v) :S i} 

aOi (boic) = K"(a,b,c) = 
= {x I d(a,x):s i} U {y I d(b,y):s 2i} U{z I d(c,z):S 2i}. 
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Proof. We have (a 0i b) 0i C c K' (a, b, c). Indeed, 

(aoib)OiC ({y I d(a,y)::; i} U {z I d(b,z)::; i}OiC = 
{u I d(u,y) ::; i,d(y,a}::; i}U 

U {v I d(v,z)::; i,d(z,b)::; i}U{w I d(w,c)::; i}. 

So, 

(aoib)OiC c K'(a,b,c) = 

= {A I d()..,a)::; 2i} U {JlI d(Jl, b) ::; 2i} U {w I d(w,c)::; i}. 

Let us see now that also (a 0i b) 0i C => K'(a, b, c). 
Let x E {>'ld(,X, a)::;2i}. Then there is q::;2i such that d(x, a)=q. 
If q ::; i, then x E a 0i a C (a 0i b) 0i c. 
If q > i, there is a path 11" between a and x, there are t ::; i and 

w E 11" such that 

d(a,w) = t, d(w, x) ::; p = q - t::; i. 

So w E a 0i a and x E W 0i W C W 0i c, proving x E (a 0i a) 0i c C 
C (aoib)OiC. 

Analogously, one sees that {Jl I d(Jl, b) ::; 2i} C (a 0i b) 0i c; 
hence 

K' C (a 0i b) 0i c. 

In a similar way, it can be proved that 

a 0i (b 0i c) = K"(a, b, c) = 
= {x I d(x, a) ::; i} U {y I d(y, b) ::; 2i} U {z I d(z, c) ::; 2i} . 

• 
43. Theorem. Let < H; r > be a connected graph of finite di­
ameter c5. Then c5 ::; 2i if and only if V (a, b, c), (a 0i b) 0i C = H = 
= a 0i (boi c). 

Proof. Set c5 ::; 2i. Then it follows that 

Vq E H, {x I d(qx)::; 2i} = H, 
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therefore V (a, b, c) 

(a 0i b) 0i C = 
= {x I d(ax) ~ 2i} U {y I d(by) ~ 2i} U {z I d(az) ~ i} = H = 
= {x I d(ax) ~ i} U {y I d(by) ~ 2i} U {z I d(az) ~ 2i}. 

Whence 0i is trivially associative since V (a, b, c) 

(a 0i b) 0i C = H = a 0i (b 0i c) 

For the converse, set V (a, b, c) E H3 , (a 0i b) 0i C = H. Then Va we 
have 

H = (a 0i a) 0i a = K" (a, a, a) = {x I d( ax) ~ 2i} 

therefore b ~ 2i. 

§6. Other hyperstructures associated 
with hypergraphs 

• 

In this paragraph a new type of hypergroups associated with hy­
pergraphs is defined. Some properties of their subhypergroups are 
studied. This is a generalization of hypergroups associated with 
graphs, given by P. Corsini. These results are obtained by V. and 
L. Leoreanu. 

Let (H, (Ai)iEJ) be a hypergraph, that is U Ai = Hand 
Vi E J, A; -# 0. iEJ 

Let x, y be two different points of H. We say that there is a 
trail between x and y if there is {x = XO,Xl, ... ,Xn = y} cHand 
{jt, h, ... , jn} C J, such that ViE {a, 1, ... , n-l}, 3ji+l E J, so that 
we have {Xi,Xi+1}CAj i+l and i -# i' =====> {Xi,XHd -# {Xi',Xi/+1}. 
The trail is a path if the vertices are different. 

We shall denote by 'Y(x, y) the set of all the paths between x 
and yin (H, (A;)iEJ). 
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If 7r E 'Y(x,y), 7r : x = XO,XI, "',Xn = Y and e'k = [Xk-l,Xk] is 
the k--edge of 1r, counting from x, set a.,.. = {j E J I 3k : e'k C Aj} 
and ax,y = U a 1T • 

1TE"r(X,y) 

Let us suppose that (H, (Ai)iEJ) is a connected hypergraph. 
Let us define the hyperoperation on the set H as follows: 

{ . U A j , if x =1= y 
x 0 y = JEox,v 

{x}, ifx=y 

44. Remarks. 

1. "0" is a commutative hyperopetation. 

2. {x,y} C xoy, so that (H,o) is a quasihypergroup. 

45. Proposition. For any x, y in H, we have 

(x 0 x) 0 y = x 0 (x 0 y) = x 0 y. 

Proof. It is sufficiently to check that for any distinct x, y in H, we 
have x 0 (x 0 y) = x 0 y. 

Let s be arbitrary in x 0 (x 0 y); then there is t E x 0 y, such 
that sEx 0 t. We need to prove sEx 0 y. 

If t = x, then s = x E x 0 y. 
If t = y, then sEx 0 y. 
Let us suppose t fj. {x, y}. Since t E x 0 y, it follows that there 

are 1rl E ,(x, y) and h E a 1T! such that t E Ah . 

1rI : x = ao, aI, ... , an-I, an = y 
Since sEx 0 t, it results that there is 1r2 E 'Y(x, t) and there is 

k E a 1T2 , such that s E A k . 

1r2 : x = (Jo,{31 , ... , (Jm-I, (Jm = t 
Let 

JI={O,I,2, ... ,k-l}, J2={k,k+l, ... ,m} 
II = {a, 1,2, ... ,h -I}, 12 = {h,h + 1, ... ,n} 
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We shall consider the following situations: 

I. If there is (i,j) E (II UI2 )xJ2 such that Qi = {3j and there is not 
(i,j) E (II U 12) x Jt, such that Qi = {3j, set 

p = min{j E J2 I 3ft U 12 : Qi = {3j} and {3p = Qpo 

Then the trail 

is a path and sEx 0 Yo 

II. If there is no (i,j) E (II U h)xJ2 such that Qi = {3j and there 
is (i,j) E (II Uh)xJt, such that Q = {3j, set 

p' = max{j E J1 I 3i E II U 12 : Qi = {3j} and {3pl = Qj1 

We have two possibilities: 

11.1. If p' = max{j E J1 I 3i E II : Qi = {3j} then p' E II and the 
trail: 

is a path and sEx 0 Yo 

11.2 If p' = max{j E J1 I 3i E 12 : Qi = {3j} then f/ E 12 and the 
trail: 

is a path and sEx 0 Yo 

III. If there is no (i,j) E (II U I2)X(J1 U J2), such that Qi = {3j, 
then the trail 

is a path and sEx 0 Yo 
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IV. If there are (i,j) E (II UI2 )xJ2 and (i',j') E (II UI2)xJt, such 
that ai = {3j and ai' = {3i', set 

p = min{j E J2 13i E II UI2 : ai = {3j}, {3p = ap and 
p' = max{j' E J1 I 3i' E II U 12 : ai' = {3i'}, {31" = ajl. 

We shall consider the following possibilities: 

IV.I. If p' = max{j E J1 13i E II : ai = {3j} and p < p', then the 
trail: 

is a path and sEx 0 y. 

IV.2. If p' = max{j E J1 I 3i E It : ai = {3j} and p' < p, then the 
trail: 

is a path and sEx 0 y. 

IV.3. If p' = max{j E J1 I 3i E II : ai = {3j} and p < p', we 
consider the same path as at IV.I, and we have that sEx 0 y. 

IV.4. If p' = max{j E J1 I 3i E II : ai = {3j} and p' < p, we 
consider the same path as at IV.2, and we have that sEx 0 y. • 

46. Theorem. (H, 0) is a regular reversible hypergroup. 

Proof. First, we verify the associativity. It remains to check that: 

v (x, y, z) E H3; X =J y =J z =J x, we have (x 0 y) 0 z = x 0 (y 0 z). 

We show that: 

(*) V(x,y,Z)EH3, (xoy)oz=xozUxoy. 

By (*) and by Remark 20, 

V (x, y, z) E H3, (x 0 y) 0 z C x 0 (y 0 z). 
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Therefore, 

xo(yoz) = (yoz)ox C yo(zox) = (zox)oy C zo(xoy) = (xoy)oz. 

Hence, if (*) holds, we have: 

V(x,y,Z)EH3 , (xoy)oz=xo(yoz). 

It sufficis to verify that 

V(x,y,z) E H3 , x =1= y =1= z =1= x, we have (xoy) oz ~ xozUxoy. 

Let 8 be an arbitrary element of x 0 y and w an arbitrary element 
of 80 z. We need to prove that w E x 0 z U x 0 y. 

If 8 = z, then w E z 0 z = {z}, so w = z E x 0 z U x 0 y. 
Next, we consider 8 =1= z. 
Since 8 E x 0 y, there are 1Tl E /,(x, y) and k E J, such that 

8 E Ak 
1Tl : x = {30,(31, ... , {3k-l, {3k, ... , {3m = y. 

Since w E 80 z, there are 7r2 E /,(8, z) and h E J, such that w E Ah 

Set 
J 1 = {O, 1, ... , k - I}, J2 = {k,k + 1, ... ,m} 
II = {O, 1, ... , h - I}, 12 = {h, h + 1, ... , n} 

We consider the following situations: 

I. If there are (i,j) E IIX(J1 U J2 ) and (i',j') E hx(JI U J2 ), such 
that ai = {3j and ai' = {3j', then set 

PI = min{i E 12 13j E J1 U J2 : ai = {3j}, apl = {3pl' 
P2 = min{i' E Ii 13j' E J1 U J2 : ai' = {3j'}, a P2 = {3fi2. 

We have the following cases: 

1.1. If PI = min{i E 12 1 3j E J1 : ai = {3j} and fit < P2, then the 
trail: 

x = {30, {31, ... , {3Pl = a pl , apI-I, ... , aP2 = {3fi2' {31>2+1> ... , {3m = Y 

is a path and w E x 0 y. 
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1.2. If PI = min{i E 12 I 3j E JI : Cti = ,6j} and P2 < PI, then the 
trail: 

is a path and w E x 0 y. 

1.3. If PI = min{ i E 12 I 3j E J2 : Cti = ,6j} and P2 < PI, then the 
trail: 

is a path and w E x 0 y. 

1.4. If PI = min{i E h 13j E J2 : Cti = ,6j} and PI < P2, then the 
trail: 

is a path and w E x 0 y. 

II. If there is (i, j) E II X (JI U J2) such that Cti = ,6j and there is 
no (i,j) E I2X(JI U J2), such that Cti = ,6j, let 

P = max{i E II 13j E J1 U J2 : Cti = ,6j}, Ctp = ,6p. 

Then the trail: 

is a path and wE x 0 z. 

III. If there is no (i, j) E II X (J1 U J2 ) such that Cti = ,6j and there 
is (i,j) E I2X(J1 U J2), such that Cti = ,6j, let 

We have the following cases: 



APPLICATIONS OF HYPERSTRUCTURE THEORY 91 

111.1. If p = min{i E h I 3j E J1 : Q'i = Pj}, then p E J1. The 
trail: 

is a path and w E x 0 y. 

111.2. If p = min{i E 12 I 3j E J2 : Q'i = Pj}, then p E J2 . The 
trail: 

is a path and w E x 0 y. 

IV. If there is no (i,j) E (II U 12)x(J1 U J2), such that Q'i = Pj, 
then the trail: 

is a path and w E x 0 z. 

Therefore, (H, 0) is a hypergroup. 

Since for any (a, x) E H2, we have a Ex 0 a = a 0 x, it follows 
that any element of H is an identity of Hand H is the set of 
inverses of an arbitrary element of H. Therefore, H is a regular 
hypergroup. 

Let (a, b, c) E H 3 , such that a E b 0 c; there is c' = b inverse 
of c, be such that b E a 0 c' and there is b' = c inverse of b such 
that c E b' 0 a, whence it follows that H is a regular reversible 
hypergroup. 

47. Remark. (H, 0) is a join space if and only if (H, (A)iEJ) is a 
tree. 

Indeed, if there is at least one io E J, such that IAio I 2::: 3, this 
means there are y,a,b in A o ' y =f- a =f- b =f- y; then we can consider 
x E H, x tj. {a,b}, such that there is i E J: {x,y} C Ai. 

We have: a E Aio U Ai C X 0 band b E Aio U Ai C X 0 a, so 
that x E ajb n bja, but a 0 a n bob = {a} n {b} = 0. Therefore, 
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(H, (Ai)iEJ) is a graph. But the only type of connected graph, for 
which the associated hypergroup is a join space is a tree 
(see [71]). • 

We present the following results on subhypergroups of (H, 0). 

48. Proposition. 
n 

(i) For any n E IN* and for any (Xl, ... , xn) E Hn, the set II Xj is 
a subhypergroup of H. j=l 

(ii) Any finite subhypergroup of H can be written as a hyper­
product of elements of H. 

(iii) There are hyper graphs, whose hyper groups have subhypergroups, 
that are not hyperproducts. 

(iv) The only closed subhypergroup of H is H. 

n 

Proof. (i) Let S = II Xj and a an arbitrary element of S. We 
j=l 

need to prove that 
aoS= S. 

Indeed, V s E S, sEa 0 s, so Sea 0 S. 
Let t E S. Then, since for any x E H, we have x 0 x = x and 

by the associativity and the commutativity, it results: 

n n n 
a 0 t c So S = II Xj 0 II Xj = II Xj = S. 

j=l j=l j=l 

(ii) Let S = {Xl, X2, ... , xn}be a finite subhypergroup of H. Then 
n 

S = II Xj' 
j=l 

(iii) We can consider the following examples: 
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1 0 . Let H = 1N be the graph, for which there is an edge between 
i and j, where {i, j} C 1N, if i and j are consecutive numbers. Then 

i 0 j = {k E 1N I min{i,j} ~ k ~ max{i,j}} 

It results that, for any {il,i2 , .•. ,is } C 1N, s E 1N, s ~ 2, 

s 

II ij = {k E 1N I min{il ,i2 , ... ,is } ~ k ~ max{il ,i2 ,.··,is } 

j=l 

is a finite set. 

For io E 1N, the set S = {j E 1N I j ~ io}is an infinite subhy­
pergroup of Hand S is not a hyperproduct. 

2°. Let (H, (Ai)iElN) be a hypergraph (that is Vi, Ai =I 0 and 
UAi = H) such that: for any i E 1N, Ai is the smallest subset of 
iEI 

Q+, containing i and i + 1 and such that if {x, y} C Ai, then 

X+y EA. 
2 

For x E JR, the number [x] is the greatest integer not exceeding x. 
Then, for any {x,y} C H, we have 

{ 
U Ak 

min{[xl,[Yl}~k~max{[xl,[Y]} 
xoy= 

X 

, ifx=lY 

, ifx=y 

whence for any m E 1N, m ~ 2, and for any different elements 
Xl, X2, ... , Xm of H, we have: 

m 

llXj = U A k , 

j=l min{[xl1,[X21, ... ,[xm]}~k~max{[xl1,[x21, ... ,[Xm]} 

that is a bounded set. 



94 PIERGIULIO CORSINI and VIOLETA LEOREANU 

But, for any jo E 1N, S = {j E H I j ~ jo} is an unbounded 
subhypergroup of H, so S can not be written as a hyperproduct. 

(iv) Let S be a subhypergroup of H, S -=I H and let xES and 
y E H - S. We have x E yo x, so S is not a closed subhypergroup. 

Therefore, H has no proper closed or invertible or ultraclosed 
or complete part sUbhypergroup. _ 



Chapter 3 

Binary Relations 

The first connection between a hyperstructure and a bi­
nary relation is implicit in Nieminen [300), who associated 
a hypergroup with a connected simple graph. 

In the same direction, albeit with different hyperopera­
tions associated with graphs, went the papers by Corsini 
([74), [79)) and Rosenberg ([326)) and, in the following, by 
v. Leoreanu and L. Leoreanu ([238)). 

Later, Chvalina ([38)) found a correspondence between 
partially ordered sets and hypergroups. Rosenberg ([326)) 
generalized Chvalina definition, associating with any binary 
relation a hyper groupoid. 

Rosenberg hypergroup was studied by Corsini ([79)) and 
then, by Corsini and Leoreanu ([88)), who considered hyper­
groups associated with union, intersection, product, Carte­
sian product, direct limit of relations, as we have seen be­
fore. 

There are still open problems on this subject. One of 
them is to find necessary and sufficient conditions for the 
hypergroupoids associated with union, intersection, product 
etc, to be hyper groups. Recently, Spartalis, De Salvo and 
Lo Faro have obtained new results on hyperstructures asso­
ciated with binary relations. 

95 
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§1. Quasi-order hypergroups 

Quasi-order hypergroups have been introduced and studied by Jan 
Chvalina. 

1. Definition. Let (H,.) be a hypergroupoid. We say that H 
is a quasi-order hypergroup (that is a hypergroup determined by a 
quasi-order) if V (a, b) E H2, a E a3 ~ a2 and a . b = a2 U b2 . 

Moreover, if the following implication holds: 

a2 = b2 ===> a = b 

for any (a, b) E H2, then (H, .) is called an order hypergroup. 

2. Proposition. A hypergroupoid (H,·) is a (quasi)-order hyper­
group if and only if there exists a (quasi) -order p on the set H, 
such that 

V(a,b)EH2, a·b=p(a)Up(b). 

Proof. "==}" Let (H, .) be a quasi-order hypergroup. Let us define 
on H, the following binary relation: 

apb~ bE a2. 

p is reflexive, since Va E H, we have a E a3 ~ a2. 
If apd and dpb, then d E a2 and b E ~ ~ a4 = a2 (since 

a3 = a2 ), so that apb, that means p is transitive. 
Thus, p is a quasi-order on H and 

V (a, b) E H2, a· b = a2 U b2 = p(a) U p(b). 

Now, let (H,') be an order hypergroup. The conditions apb and 
bpa imply a E b2 and b E a2, whence a2 ~ b4 = b2, b2 ~ a4 = a2 , 

that means a2 = b2 . Since (H, .) is an order hypergroup, we obtain 
a = b, so that p is an order. 

"~" Let (H, p) be a quasi-ordered set. If we define on H 
the hyperoperation a . b = p(a) U p(b), then (H,') is a hypergroup 
satisfying a E a2 = a3 and a2 = p(a), for any a E H. 
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Moreover, if p is antisymmetric and if we have a2 = b2 (for 
(a, b) E H2) then pea) = pCb), that means apb and bpa, so we 
obtain a = b. • 

3. Notations. For any (a, b) E H2, we denote 

4. Theorem. Let (H,·) be a quasi-order hypergroup and p the 
associated quasi-order on H. The following conditions are equiva­
lent: 

(i) (H,·) is a join space; 

(ii) for \/ (a, b) E H2, such that a . b ~ c2 for a suitable element 
e E H, there exists an element d E H, such that ~ ~ a2 n b2 ; 

(iii) for \/(a, b) E H2, such that Lp(a,b) =I- 0, we also have 
Up(a, b) =I- 0. 

Proof. (i)==?(ii) Let (H,.) be a join space and (a, b) E H2, such 
that::le E H: a·b ~ e2. We have p(a)Up(b) = a2Ub2 = a·b ~ e2 = 
= pee) so aEp(a) ~ pee), bEp(b) ~ pee). Hence aEp(b)Up(e) = be, 
bEp(a)Up(e) = a·e, whence eEa/bnb/a. Therefore, a2nb2 =I- 0 and 
for any dEa2nb2, we have ~ = p(d) ~ p(a2nb2) = p(p(a)np(b)) ~ 
~ p2(a) n p2(b) ~ pea) n pCb) = a2 n b2, so we obtain (ii). 

(ii)==?(iii) Let (a, b) E H2, such that Lp(a, b) =I- 0. Then there 
is e E Lp(a, b) = Lp{a, a)nLp{b, b) = p-l(a)np-l(b); hence cpa and 
epb. Since a E pee) it results pea) c p2(e) and we have p2(e) ~ p(c) 
so pea) ~ pee) and similarly, pCb) ~ pee). Hence a·b = p(a)Up(b) ~ 
~ p( c) = e2 • By hypothesis, there exists d E H, such that 
d2 ~ a2 n b2. 

On the other hand, a2nb2 = p(a)np(b) = Up(a,a)nUp(b,b) = 
= Up(a, b). It results Up (a, b) 1= 0. 

(iii)==?(i) We have to verify the following implication: 

alb n e/ d =I- 0 ==? a . d n b . e =I- 0. 
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Let x E alb n eld. It results a E xb = p(x) U p(b) and e E xd = 
= p(x) U p(d). We have the following possibilities: 

1 ° x E p-l(a) n p-l(e) = Lp{a, e). From (iii) it results Up(a, e) = 
= p(a) np(e) =f. 0. Therefore, ad n be = (p(a) U p(d» n (p(b) U 
Up(e» = (p(a) n p(b» U (p(d) n p(b» U (p(a) n p(e» U (p(d) n 
np(e» =f. 0. 

2° a E p(b). Then p(a) C p2(b) C p(b), so p(a)np(b) =f. 0, whence 
ad n be =f. 0. 

3° Similarly, if e E p(d), then p(e)Cp2(d)Cp(d) so p(e)np(d)=f.0, 
whence ad n be =f. 0. 

In all the situations, we obtain ad n be =f. 0. Therefore, (H,·) is a 
join space. • 

§2. Hypergroups associated with binary 
relations 

LG. Rosenberg associates a hypergroupoid HR with every binary 
relation R on a set H and with full domain, in this manner: 

"I(x,y) E H2, xoy = {z E H I (x,z) E R or (y,z) E R}. 

He characterizes all R such that the hypergroupoid HR = (H,o) is 
a semihypergroup, hypergroup and join space. 

Let R C HxH and for all (x, y) E H2, set 

xox = {y E H I (x,y) E R}, xoy = xoxUyoy and HR =< H;o > . 

5. Definition. We say that x E H is an outer element of R if 
3h E H, such that (h, x) ¢: R2 and an inner element of R otherwise. 

First of all, we have the following: 
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6. Lemma. HR is a hypergroupoid if and only if H is the domain 
of R. • 

7. Theorem. Let R be a binary relation on H with full domain. 
Then HR is a semihypergroup if and only if R ~ R2 and the fol­
lowing implication is satisfied: 

(a) (a, x) E R2 ==} (a, x) E R 
whenever x is an outer element of R. 

Proof. First notice that for HR the associative law for" 0" becomes 

aDa U ( U uou) = ( U vov) U CDC 
uEbobUcoc vEaoaUbob 

which can be expressed as follows: For all (a, b, c, x) E H4 

({3) 
(a,x) E R or (b,x) E R2 or (c,x) E R2 ~ 

~ (a,x) E R2 or (b,x) E R2 or (c,x) E R. 

(==}) Let HR be a semihypergroup. Assume to the contrary that 
R ~ R2. Then there exists (b, x) E R - R2. Consider ({3) for 
a = x and c = b. Then the right-hand side of ({3) is clearly sa­
tisfied on account of (c, x) = (b, x) E R. On the left-hand side 
(b,x) = (c,x) tJ. R2 and so (x,x) = (a,x) E R. Now (b,x) E Rand 
(x, x) E R yield the contradiction (b, x) E R2. Thus R ~ R2. To 
prove (a) suppose to the contrary that there exist an outer element 
x of R and a E H such that (a, x) E R2 - R. By the definition of an 
outer element clearly (b, x) tJ. R2 for some bE H. Set c = b in ({3). 
In view of (a, x) E R2 the right-hand side of ({3) holds while the 
left-hand side is invalid on account of (a, x) ~ Rand (b, x) tJ. R2. 
This contradiction proves the validity of (a). 

(~) Let R ~ R2 and (a,x) E R2 ==} (a,x) E R provided x is 
an outer element of R. Let (a, b, c, x) E H4. If (b, x) E R2 then 
both sides of ({3) are satisfied. Thus let (b, x) tJ. R2. Then x outer 
and (a) yield (a, x) E R2 ==} (a, x) E R. Notice that in view of 
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R ~ R2 we have (a, x) E R2 ¢::=:> (a, x) E R. By the same taken 
(c, x) E R2 ¢::=:> (c, x) E Rj together with (b, x) tj. R2 this proves (13) . 

• 
The above Theorem can be reformulated for hypergroups in 

the following manner: 

8. Theorem. Let R be a binary relation. Then HR is a hypergroup 
if and only if 

1) R has full domain; 

2) R has full range; 

3) R ~ R2, and 

4) (a,x) E R2 =* (a,x) E R 
whenever x is an outer element of R. 

9. Proposition. Let < Hj 0 > be a semihypergroup. There is a 
binary relation R on H, such that < H; 0 > is of the form HR if 
and only if V (a, b) E H2, the following conditions are satisfied: 

(1°) aob = a2 U b2 j 

(2°) a2 ~ (a2)2, and 

Proof. (=*) Let HR =< Hj 0 > be a semihypergroup. Notice 
that 

(z, t) E R ¢::=:> t E z2, (z, t) E R2 ¢::=:> t E (Z2)2. 

Now (1°) follows from the definition of HR and (2°) is a translation 
of R ~ R2. To prove (3°) let x belong to the left side of (I). Then 
(a, x) E R2 and (b, x) tf:. R2 and therefore x is an outer element 
of R. From (a) in Theorem 7 we obtain (a, x) E R which means 
x E a2• 
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( <==) Let < H; 0 > satisfy (1°)-(3°). Set 

R={(a,b)laEH, bEa2} 
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(8) 

Now (1°) means aob = aoa U bob for all a, b E H. As a2 is nonvoid 
for each a E H, clearly the domain of R is IDR = H. It can be 
easily verified that (2°) translates into R ~ R2. To prove (0:) let 
(a, x) E R2 where x is an outer element of R. Then (b, x) ¢. R2 for 
some bE H. From (8) we obtain x E (a2)2 and x ¢. (b2)2. Now (T) 
yields x E a2 and (a, x) E R by (8). • 

§3. Hypergroups associated with union, 
intersection, direct product, 
direct limit of relations 

As we have seen in the previous paragraph, with any binary re­
lation R on a set H, a partial hyper groupoid H R = < H; 0 > is 
associated, as follows: 

\I(x, z) E H2, X 0 X = {y E H I (x, y) E R}, x 0 Z = x 0 xU z 0 z. 

Let 

for all k~2, 

ID(R) = {x E H I :3y E H : (x, y) E R}, 

lR(R) = {x E H I :3z E H : (z, x) E R}, 

x is called an outer element for R if :3h E H : (h, x) ¢. R2. 
Rosenberg found conditions on R, such that HR is a hyper­

group or a join space (see [326]). Let us recall Theorem 8, §2: 

HR is a hypergroup if and only if: 
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1. H = ID(R); 
2. H = JR(R); 
3. R c R2; 
4. if x is an outer element for R, 

then Va E H, (a, x) E R2 ===:> (a, x) E R. 

If HR is a hypergroup, then it is called the Rosenberg hyper­
group. 

In this paragraph, the hypergroup HR associated by Rosenberg 
with a binary relation R, is analysed especially in the case R is sym­
metric, and conditions are found on relations Ri so that the hyper­
groupoid associated with the union, intersection, direct product, 
direct limit of the ~ is a hypergroup. 

Let < H R ; 0 > be the hypergroup associated to a binary rela­
tion R satisfying the conditions 1-4 of Theorem 8. 

Set P = {x E H I xox ':j x} and K = {e E H I eoe :> P}. 

10. Theorem. HR is regular if and only if K i- 0. 

Proof. Let us prove the two implications: 
"===:>" Let e be an identity of the regular hypergroup HR. 
If P = 0, clearly eoe :> P. 
If Pi- 0, then V x E P, we have eox = eoeUxox. Since x t/: xox, 

it follows that eoe 3 x, therefore eoe :> P, whence K i- 0. 
"~" If P = 0, then Vx E.H, xox 3 x, whence V(x,y) E H2, 

we have: xoy = xox U yoy :> {x,y} so H = IH and Vx E H, 
H = i(x) (the set of inverses of x). 

Now, let us suppose Pi- 0. Then if e E H is such that eoe :> P, 
we have 

V x E P, eox = eoe U xox :> eoe 3 x. 

V Y E H - P, eoy = eoe U yoy :> yoy 3 y. 

Therefore IH is not empty, since IH :> K. On the other side, if 
e E IH , we have V z E H, eoz = eoe U zoz :> eoe 3 e, whence 
e E i(z) and so HR is regular. _ 
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11. Remark. 

1. KnP = 0. 
2. K=IH . 

Proof. 

1. If e E K n P, then e E P implies eoe ~ e, but e E K implies 
eoe ::) P :3 e, a contradiction. 

2. Let e E K. Then eoe :2 P and for every hE P, h E eoe ~ hoe. 
For h E H - P, clearly h E hoh ~ hoe. This proves e E IH 
and K ~ IH . We prove the inverse inclusion. Let e E IH , and 
x E P. Then eox = eoe U xox :3 x. Since xox ~ x we obtain 
x E eoe hence e E K. • 

For an equivalence relation () on H denote by HI () the set of 
blocks (or equivalence classes) of (). 

12. Theorem. If HR is a hypergroup then 

(i) R2 is transitive, 

(ii) if, moreover, R is symmetric, then R2 is an equivalence rela­
tion on H, 

(iii) if R is symmetric and IHI R21 > 1 then R is an equivalence 
relation on H. 

Proof. (i) Suppose to the contrary that there exist (x, y) E R2 :3 

:3 (y, z) such that (x, z) tJ.R2. Then z is outer and so (y, z) E R. Since 
(x,y) E R2, there exists a E H such that (x, a) E R:3(a,y). Now 
(a, z) E R2 shows (a, z) E R. Thus (x, z) E R2, a contradiction. 

(ii) Let R be symmetric. Let x E H. We have (x, y) E R for 
some y E H (since the domain of R is H, according to 1, Theorem 
8) and by symmetry (x,y) E R:3 (y,x) whence (x, x) E R2, proving 
the reflexivity of R2. It is clear that R2 is symmetric and so by (i) 
the relation R2 is an equivalence relation on H. 
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(iii) Let R be symmetric and IH/ R21 > 1. Then each h E H 
is outer and so R2 eRe R2 by 3 and 4 of Theorem 8, proving 

R=W. -

13. Theorem. If K =1= 0 and R is symmetric, then HR is a regular 
reversible hypergroup. 

Proof. By Theorem 10, we know that HR is regular, so only the 
reversibility has to be proved. For any a E H, set Ua = aoa. 

Let a E boc. Since boc = Ub U Uc we can suppose a E Ub whence 
(b, a) E R. Hence (a, b) E R, and so b E Ua. It follows that for all 
x E H, we have b E Ua U Ux = aox; thus if c' is any inverse of c, 
then bE aod. So HR is reversible on one side. 

Let us remember now that VeE I H, e is an inverse of every 
element of H. 

I. If c t/:. coc, then c E eoe, whence c E eoe U Ua eoa and 
e E i(b). 

II. If c E coc let us distinguish two cases: 

1. IH/R21>1. In this case, VxEH, we have i(x) = IH = H 
hence c E i(b), so c E coa, where c E i(b). Therefore, if 
IH/R21 > 1, H is reversible. 

2. Let us suppose now IH/ R21=1, whence R2=H2. Let e be 
an identity, since eR2c, there is dE H such that (e, d) E 

R3(d, c). It follows c E dod and d E eoe from which 
e E dod and c E dod. Therefore we have dob = Ud U Ub = 
dodUUb. Since dod3e, it follows dob"3e, so dEi(b), but we 
have also dod "3 c, then doa = dod U aoa "3 c. Therefore, 
we can conclude that HR is reversible on both sides. _ 

Operations on R(H) and the corresponding HR 

Let R, S be binary relations on H, satisfying the conditions 1-3 
of Theorem 8. Then also R uS satisfies 1-3, but generally, as the 
following examples show, HRUS is not a hypergroup even if both 
HR and Hs are. 
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I. Let H = {I, 2, 3, 4}, IH = {(x, x) I x E H}. R = IHU{(I, 2)}, 
8 = IH U {(2, 3)}. Clearly, HR and Hs are hypergroups and 
we have: R2 = R, 8 2 = 8. 
(R U 8)2 = R2 U 8 2 U R8 U 8R = R U 8 U {(I, 3)} :) R U 8. 

of 
Hence (4, 3)tj(R U 8)2, so 3 is outer for R U 8, but 
(1,3) E (R U 8)2_R U 8. Therefore, 1,2,3 of Theorem 8 are 
satisfied, but 4 is not, so HRUS is not a hypergroup. 

II. If we suppose R8u8R c R2U82, and R2 = R, 8 2 = 8, then 
4 is satisfied by R U 8 and therefore HRUS is a hypergroup. 

14. Remark. The condition R8u8R c R2u82 (that is (RU8)2 = 
= R2 U 8 2 ) is not necessary for HRUS to be a hypergroup as we see 
in III: 

III. Set H = {I, 2, 3}. R = IH U {(I, 2)}, 8 = IH U {(2, 3)}. 
We have R2 = R, 8 2 = 8 and ,(R U 8)2 = R2 U 8 2 U {(I, 3)} 
so (R U 8)2 =1= R2 U 8 2 but R U 8 satisfies the condition 4. 

15. Remark. Neither of R2=R, 8 2=8, nor both HR, Hs be hy­
pergroups is necessary for HRUS to be a hypergroup as one sees in 
IV: 

IV. Set H = {I, 2, 3}. 
R={(I, 2), (2, 1), (2,2), (3, 3)}, 8={(2, 3), (3, 2), (1, 1), (3, 3)}, 
so R2 = IHU{(I, 2), (2, I)}:) R, 8 2 = IHU{(2, 3), (3, 2)}:) 8 

of of 
and (R U 8)2 = H x H:) R2 U 8 2 whence all the conditions 

of 
1-4 are satisfied by R U 8. 

Let us remark also that HR, Hs do not satisfy 4. Indeed: 
(3,1) tj R2 implies that 1 is outer, but (1,1) tj R2 - R. 
(1,2) tj 8 2 implies that 2 is outer, but (2,2) tj 8 2 - 8. 

16. Theorem. Let Rand 8 be reflexive and transitive relations 
on H (that is, quasi-orders). Then HRns is a hypergroup. 
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Proof. Indeed, R n S is quasi-order and so it satisfies 1-4 of 
Theorem 8. • 

17. Corollary. If HR and Hs are hypergroups, Rand S are 
symmetric, and IH/R21 > 1 < IH/S21, then H Rns is a hypergroup. 

Proof. It follows directly from Theorem 12 (iii) and Theorem 16 .• 

18. Theorem. Let R, S be relations on H such that 

(a) ID(R) = JR(R) = H = JD(S) = JR(S) 

((3) R2 = R, S2 = S, RS = SR. 

Then H RS is a hypergroup. 

Proof. Indeed, we have (RS) (RS) = R(RS)S = R 2S2 = RS, 
whence the conditions 3, 4 of Theorem 8 are satisfied. Moreover, 
1, 2 of Theorem 8 follow from (a). • 

19. Corollary. If Rand S are equivalence relations on H such 
that RS = SR, then HRS is a hypergroup. 

Proof. It follows from Theorem 18. 

20. Theorem. Let HI, H2 be non empty sets. Le ~ be a binary re­
lation on Hi (i = 1,2) and (Hi)Ri = < Hi; 0i > be the hypergroupoid 
associated with ~. Let H = HI X H2 and let H be endowed with the 
hyperopemtion (XI, X2)0(Yl, Y2) = (Xl 01 Yl, X2 02 Y2) and let Rl XR2 
be the binary relation on H defined as follows: 

Then 

a) HRIXR2 = (Hl)Rl X (H2)R2. 

b) HRIXR2 is a hypergroup if and only if for j E {I, 2} 
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(i) (Hj)Rj is a hypergroup, and 

(ii) RJ =1= HJ ~ R3- j = RLj · 

Proof. (a) Direct verification. 
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(b) (~) Let HRIXR2 be a hypergroup. We prove (i) for j = l. 
By 1 and 2 we get ID(Rl xR2) = H = IR(Rl xR2) proving 1 and 2 
for R I . Next, by 3 

and so RI satisfies 3. To prove 4 let Zl be an outer element of RI and 
(at, Zl) E R~. Since ID(R2) = H2, there exists (a2' Z2) Em. Clearly, 
(Zl' Z2) is outer for RI XR2 and from ((at, a2), (Zl' Z2)) E R~ xR~ and 
4 we obtain ((at, a2), (zt, Z2)) E RI XR2 and (aI, Zl) E RI . Thus RI 
satisfies 4 and (HI)Rl is a hypergroup. The same proof shows that 
(H2)R~ is a hypergroup. 

To prove (ii) let j = 1 and R~ =1= Hl- Choose (z, Xl) E Hi - R~. 
To prove m c R2 let (YI, Y2) E R~. As IR(RI) = HI = ID(RI), 

we have (a, Xl) E RI for some a and (b, a) E RI for some b. Then 
(b,xt) E R~ and (Yt,Y2) E R~ show ((b,YI), (Xt,Y2)) E R~xR~ = 
= (RIXR2)2. Here (Xt,Y2) is outer for RIXR2 due to (Z,XI) ¢:. R~. 
By 4 clearly ((b,YI),(Xt,Y2)) E RIXR2 and (YI,Y2) E R2 proving 
R~ C R2. We showed above that R2 c m. Together R~ = R2. The 
same proof works for j = 2. 

({=:) Let (i) and (ii) hold. It is easy to see that HRl XR2 satisfies 
the conditions 1-3. To prove 4 let Z = (Zl' Z2) be an outer element 
of Rl xR2. Then for some j E {I, 2} the element Zj is an outer ele­
ment of Rj . Then RJ =1= HJ and from (ii) we see that R3- j = RLj . 
Let a = (at, a2) satisfy (a, z) E R~ xm. Since (Hj)Rj satisfies 4 
we obtain (aj, Zj) E Rj . Moreover, since we have R3- j = RLj , it 
results (a, z) E RI xR2. • 

Now, let us recall some definitions. We call model a pair 
< H; R >, that is a set H endowed with a binary relation R. 
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If < H'; R' > is another model, we say that a function f : H ---t H' 
is a homomorphism of models, and we write f E Hom(H, H'), if the 
following implication is satisfied: (x, y) E R =? (f(x), f(y)) ER'. 

We say that a family of models {< Hi, Ri > hEI is direct if it 
satisfies the following conditions: 

(i) < I; ::;) is a direct partially ordered set. 

(ii) V(i,j) E 12 , i -/: j ~ Hi n Hj = 0. 

(iii) for any (i,j) E 12, if i ::; j, a homomorphism of models 
cp; : Hi ---t Hj is defined, such that if i ::; j ::; k, we have 

cp{cp; = cpi and ViE I, cp~ = Id (Hi). 

Set H U Hi and let us define in H the following binary 
iEI 

relation: 

V(Xi,Yj)EHixHj , xif'VYj~3kEI, k?:.i,k?:.j, 

such that CPi(Xi) =CP{(Yj). 

The relation f'V is an equivalence relation on H. 
We shall denote cp;(Xi) by Xj' The direct limit H = l~(Hi)iEI 

is the quotient H / f'V endowed with the binary relation R 

(x, z) E R ~ 3 q E I, 3xq E x n Hq, 3zq E Z n Hq 

such that (Xq, Zq) E Rq. 

21. Theorem. Let K = {< Hi, R > hEI be a direct family of 
models. If Vi E I, there is k E I, k ?:. i, such that (Hk)Rk is a 
hypergroup, then (HIi) isa hypergroup. 

Proof. To prove 1 of Theorem 8 for R, let x E H be arbitrary. 
Choose x E x Then x E Hi for some i E I. There exists k ?:. i 
such that (Hk)Rk is a hypergroup. Clearly Xk = cpi(x) E x n Hk 
(due to cpi(x) = Xk = cpHXk)). From ID(Rk) = Hk we obtain that 
(Xk' y) E Rk for some Y E Hk· Clearly (x, y) E R proving 1 for R. 
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The proof of 2 is similar. 
To prove 3 let (x, j)) E R. Then there exist i E I and (Xi, Yi) E 

E (xxj))nRi. By assumption (Hk)Rk is a hypergroup for some k ~ i. 
Set Xk = 'Pt(Xi) and Yk = 'PHYi). Notice that Xk E x, Yk E j) and 
(Xk' Yk) E Rk because 'Pt is a homomorphism of models. Applying 
3 to Rk we obtain (Xk' Yk) E R~ and so (Xk' u), (u, Yk) E Rk for some 
u E Hk. Finally, (x, u), (u, j]) E R proving R ~ R2. 

To prove 4 let z be an outer element of R. Then (a, z) tf:. R2 
- - - - -2 -

for some a E H. Let b E H satisfy (b, z) E R , whence (b, u) E 
R :3 (u, z) for some u E H. Then, from (i) and (iii), we obtain 
(b,u) E Rq:3 (u,z) for some q E I, b E bnHq, Z E znHq and 
u E unHq. Choose a E o,. Then a E Hr for some rEI. There exists 
i E I such that i ~ q, i ~ r. By the hypothesis H' = (Hk)Rk is a 
hypergroup for some k E I, k ~ i. Set a' = 'P'k(a) and z' = r.p%(z). 
We show that z' is an outer element of Rk. Indeed, a' E an Hk 
and z' E z n Hk satisfy (a', z') tf:. R~ since otherwise we would have 
(a, z) E R2. 

Set b' = 'P%(b) and u' = r.p%(u). Then (b', u') E Rk :3 (u', z') 
because 'P% is a homomorphism. Thus, (b', z') E R~. Now the hyper­
group H' satisfies 4 and so (b', z') E R k . This implies (b, z) E R 
proving 4 for H. 

Hypergraphs, relations and HR 

Denote by H(H) the set of hypergraphs on H, that is of families 
K = {AfhEh where IK is nonempty, Vi ElK, Af E P*(H) and 
UAf=H. 

Denote by SR(H) the set ofreflexive and symmetric binary re­
lations on H. For any K E H(H), define the relation RK = \lI(K) 
as follows: 

V(X,y) E H2, xRKy if and only if 3i E IK : {x,y} c Af. 

Clearly, RK E SR(H) and \lI is a function \lI : H(H) -+ SR(H). 
\lI is surjective but not injective. Set \lI-1(\lI(K)) = QK. 
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Let now :s; be the partial order on Q K defined on 
'H(H) : Kl :s; K2 if and only if ViE IK1 , 3j E IK2 such that 
A!<l C Al!2 

t - J . 

Let 0: SR(H) ~ P*('H(H)) be the function defined by setting 
V R E SR(H) , O(R) = {K E 'H(H) I w(K) = R}. Clearly, 
O(RK) = QK. For H infinite we assume the axiom of choice. 

22. Theorem. Let RE'H(H). Then O(RK) is an interval of the 
order:S;, that is O(R) has a least element f.L(R)={{ x, y} I (x, y) E R} 
and a greatest element M(R) which is the set of inclusion maximal 
subsets B of H such that B x B c R. 

Proof. 
(1) V (x, y) E H2, if xRy, then there exists j such that 

{x,y} c Af; therefore V K E O(R), f.L(R):S; K. 

(2) Let K E O(R). Vi E IK we have clearly Af xAf C Rand 
there exists B E P* (H) such that Af C B, B x B c Rand 
BxB c PxP c R implies P = B. So K :s; M(R). • 

23. Definition. Let RWm and RW M be the restrictions of W to the 
least and greatest hypergraphs of O(R), respectively. Let Wm and 
W M be respectively the functions 

Wm : {f.L(R) IRE SR(H)} -- SR(H) 
WM : {M(R) IRE SR(H)} -- SR(H) 

defined V R E SR(H), 

wm(f.L(R)) = RWm(f.L(R)), 
wM(M(R)) = RWM(M(R)). 

24. Proposition. We have Wmf.L = ISR(H) = wMM, whence f.L, M 
are injective, W m, W M surjective. 

Proof. It is enough to remark that if R = RK = W(K), we have 
f.L(R) E W-l(W(K))3M(R), whence wmf.L(RK) E w(w-l(W(K))) 3 
3WMM(RK) from which Wmf.L(RK) = wMM(RK) = w(K) = RK .• 
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Other topics 

Let R be a binary relation on H. Let H(k) = < Hi Ok > be the 
succession of hypergroupoids defined recursively as follows: 

V(x,y)EH2, XOlY=XOY, 

Vk"2.1,VxEH, XOk+1 X = U YOlY, 

v (x, y) E H2, X ° k+ 1 Y = X ° k+1 x U Y ° k+1 y. 

We have clearly z E x Ok x if and only if xRk z. 

Let us denote Ct(R) the transitive closure of the relation R. 

25. Theorem. Let R be a reflexive relation on H. Then the 
extension < Hi Ci > of HR defined by setting 

is a hypergroup. 

Vx E H, xCix = UXOkX 
k?:l 

V (x, y) E H2, xCiy = xCix U yciy 

Proof. It is enough to remark that < Hi ci > = H"R where 
R = Ct(R) = U Rk satisfies R2 = R whence the conditions 1-4 

k?:l 
of Theorem 8. -
26. Corollary. Let R be a reflexive relation on H and let IHI = n. 
Then the hypergroupoid < Hi 0n-l > is a hypergroup. 

Proof. The hypothesis implies that Rn-l = Ct(R). -
27. Theorem. Let R be a relation on Hand K a subhypergroup 
of HR. If K =1= H then K is not closed. 

Proof. Indeed, if (a, b, x) E H3 is such that a E K, b E Ua, 
x E H - K, we have b E aox = aoa U xox. So {b, a} c K but 
x tj. K whence K is not closed. _ 
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28. Theorem. Let R be a symmetric relation on Hand HR a 
hypergroup. 

1. If IH/R21 = 1, then HR has not proper subsemihypergroups. 

2. If IHjR21 > 1, then every subsemihypergroup of HR is a 
subhypergroup of HR· 

Proof. It is enough to remark that V ( a, b) E H2, aR2 b if and only 
if:Jx E H such that (a, x) E R, (x, b) E R whence b E a4 . It follows 
that Va E H, R2 (a) C < a >, where < a > is the subsemihyper­
group generated by a. _ 

29. Theorem. Let HR be a hypergroup and suppose R to be sym­
metric. Then R is regular. If IH/ R21 > 1, then R is an equivalence 
relation whence HR/ R is a hypergroup. 

Proof. Let xRy and z E H. We have: xoz = UxUUz, yoz = UyUUz. 
Set q E xoz. 

1. Let R2 = R. Then if q E zoz, we have q R (zoz); if q E xox, 

we have q R (yoy) whence we obtain xoz R yoz. 

2. Let R2 = H2. For any A E xox, since (A,y) E R2, there is 
J.l such that (A,J.l) E R, (J.l, y) E R whence (y, J.l) E R, so 
J.l E yoy. Therefore, xox R yoy for every (x, y) E H2. Then R 
is regular on both sides. 

The second statement follows from Theorem 12 and from [437, 
Theorem 29]. _ 

In this paragraph, the analysis of Rosenberg hypergroup, asso­
ciated with union, intersection, product of relations is continued 
in depth, obtaining several results among which also the mutual 
associativity plays a part. 
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30. Proposition. Let R be a relation on H. If HR is a hyper group, 
then \:In E IN*, HRn is a hypergroup. 

Proof. It is immediate that ID(R) = lR(R) = Hand R C R2 
imply ID(Rn) = lR(Rn) = H. Moreover, for every 1 ::; s ::; t, we 
have RS C Rt, in particular Rn C R2n, for every n E IN*. It remains 
to prove 4) in Theorem 8. Let x be an outer element for Rn, that is 
there exists h E H : (h, x) tj. R2n, whence (h, x) tj. R2, that is also 
x is an outer element for R. 

Suppose (a, x) E R2n. Then 3Ul E H : (a, Ul) E R2n-2 and 
(Ul' x) E R2. Since x is an outer element for R, clearly (Ul' x) E R, 
so (a, x) E R2n-l. Continuing in the same manner, we obtain 
(a, x) ERe Rn. • 

Let us denote by Ct(R) the transitive closure of a relation R. 

31. Theorem. Let Rand 5 be two relations on H, such that 
R C 5 C 52 C Ct(R). If HR is a hyper group, then also Hs is a 
hyper group. 

Proof. Since HR is a hyperg!Oup, we have ID(R) = lR(R) = H, 
whence ID(5) = lR(5) = H. Now, let us consider an outer element 
x for 5, that is 3h E H : (h, x) tj. 52. Hence, x is an outer element 
also for R. 

We show (a, x) E Ct(R) ===* (a, x) E R. Indeed, let (a, x) E 
E Ct(R). Denote by f the least integer such that (a, x) E R'-. Then 
there exist a = Uo, Ul, ... , U,- = x such that (Ui' Ui+1)ER for all 
iE{O,l, ... ,f-l}. If f ~ 2, then (Ul-2,X) E R2 and x outer for 
R would yield (Ul-2, x) ERin contradiction to the minimality of 
f. Thus f = 1 and (a, x) E R. 

Consider (b, x) E 52. Then (b, x) E Ct(R) and so (b, x) E R ~ 5 
proving 4) for 5. • 

32. Corollary. Let R be a relation on H, such that Ct(R) = H x H 
and HR is a hyper group. Then for each relation S on H, such that 
R C 5 C 52, Hs is also a hypergroup. 
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33. Corollary. Let Rand S be relations on H, such that HR is a 
hyper group and let k ;:::: 1, and s ;:::: 1. Then 

1. if S C S2 c Ct(R), then also HRsUSk is a hyper group; 

2. if T ~ Ct(R) is reflexive then also HRsUT is a hypergroup. 

Proof. 1. Since HR is a hypergroup, R C R2. Hence the assump­
tions imply 

Apply the theorem. 

2. In 1) set S = T and k = 1. -
34. Corollary. Let Rand S be relations on H, such that H RnS is a 
hypergroup and R C R2 C Ct(RnS). Then also HR is a hypergroup. 

Proof. Apply the previous theorem to R' = R n Sand S' = R. _ 

35. Corollary. Let Rand S be two relations on H, such that 
ReS c S2 C Ct(R). If HR is a hypergroup then for all positive 
kl and k2' also HRklSk2 and HSk2Rkl are hypergroups. 

Proof. From R C R2, 

R C Rkl +k2 C Rkl Sk2 C Rkl +k2+kl Sk2 C Rkl Sk2 Rkl Sk2 = 

= (RklSk2)2 ~ Ct(R). 

Theorem 31 applied to Rand S' = RklSk2 yields that HRklSk2 is a 
hypergroup. The proof that HSk2Rk2 is a hypergroup is similar. _ 

36. Corollary. Let Rand S be two reflexive relations on H, such 
that S C Ct(R). If H RUS is a hyper group, then for all positive kl 

and k2' also HRklSk2 and HSk2Rkl are hypergroups. 
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Proof. Set R' = R U 8 and 8' = Rkl 8 k2 . Since both Rand 8 are 
reflexive, R' c 8' C 8'2 C Ct(R). Then apply Theorem 31 to R' 
and 8' to obtain that H Rkl Sk2 is a hypergroup. 

By symmetry, also HSk2Rkl is a hypergroup. _ 

Now let us mention some results about mutually asociative HR 
hypergroups. 

First, recall the definition of mutually associative partial hy­
pergroupoids: 

37. Definition. We say that two partial hypergroupoids < H, 01 > 
and < H, 02 > are mutually associative (m.a.) if V(x, y, z) E H3 
we have 

(*) (x 01 y) 02 Z = X 01 (y 02 z), (x 02 y) 01 Z = X 02 (y 01 z). 

For a relation R on H and X C H set 

R(X) = {y I (x, y) E R for some x EX}. 

If X = {X1, ... ,Xn } we write R(xl, ... ,xn ) for R(X). 

38. Proposition. Let Rand 8 be relations on H with full do­
main. Then HR =< H; OR > and Hs =< H; Os > are mutually 
associative if and only if for all (x, y, z) E H3 

R8(x, y) U 8(z) = R(x) U 8R(y, z). 

Proof. We have: if (c E 10(8) ===} aoRb =1= 0), then (a OR b) 0sC = 

= {t E H I (a, t) E R8 or (b, t) E R8 or (c, t) E 8}; if (a E ID(8) 
===} bosc =1= 0), then aOR(bosc) = {t E H I (b,t) E 8R or 
(c, t) E 8R or (a, t) E R}. Hence (**) is the first equality of (*) 
for HR and Hs. Since both HR and Hs are commutative, the se­
cond equality of (*) coincides with the first one. _ 

39. Proposition. Let Rand 8 be two relations on H such that 
HR and Hs are mutually associative hypergroups. Then also HRUS 
is a hypergroup. 
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Proof. ID(RUS) = H = JR(RUS) because HR is a hypergroup and 
so ID(R) = H = JR(R). Next R C R2 and S C S2 and therefore 
RUS c R 2US2 C (RUS)2. To prove 4) in Theorem 8 let x be an 
outer element for RUS. Then (h, x) tj. (RUS)2 = R 2 URSUSRUS2 

for some h; in particular (h, x) tj. R2 and x is outer for R. 
Similarly, x is outer for S. Now consider (a, x) E (R U S)2. If 

(a, x) E R2 then (a, x) E R because H R is a hypergroup and x is 
outer for R. By symmetry the same holds for (a, x) E S2. Again 
by symmetry it suffices to consider (a, x) E RS. Setting x = a and 
y = z = h we obtain 

RS(a, h) U S(h) = R(a) U SR(h). 

Here x E RS(a) but x tj. SR(h) due to (x, h) tj. (R U S)2. Thus 
x E R(a) proving the required (a, x) E R. _ 

40. Proposition. Let Rand S be relations on H, such that 
R C RS and SRn{(x,x) I x E H} = 0. If HR is a hyper group and 
HR, Hs are mutually associative, then also H RS is a hyper group. 

Proof. Since RcRS and HR is a hypergroup, it results 

ID(RS) = JR(RS) = H. 

Moreover, from R C RS, it results RS C (RS)2. 
Now, let us consider x an outer element for RS, so x is also 

an outer element for R. If (a,x) E (RS)2, then 3b E H, such that 
(a, b) E RS:7 (b,x). Then b E (aoRb)osb = aOR(bosb) and since 
(b, b) tj. SR, it results (a, b) E R. . 

Similarly, we have x E (b 0 R x) 0 s x = b OR (x 0 s x) and since 
(x, x) tj. SR, it results (b, x) E R. 

Therefore (a, x) E R2 and since x is an outer element for R, it 
results (a, x) ERe R 0 S. 

Then HRS is a hypergroup. _ 

41. Proposition. Let Rand S be relations on H, such that 
R C RS and ID(SR) =1= H. If HR is a hyper group and HR, Hs are 
mutually associative, then HRS is a hypergroup. 
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Proof. As in the proof of the above proposition, we have 

ID(RS) = IR(RS) = Hand RS C (RS)2. 

Let x be an outer element for RS. If (a, x) E (RS)2, then 3b E H, 
such that (a, b) E RS 3 (b, x). Let h E H - ID(SR). We have 
bE (aoRh)osh = aOR(hosh) and since (h,b) f/. SR, it results 
(a, b) E R. 

Similarly, x E (b o}h)02h = bodho2h) and since (h,x)fj.SR 
it results (b, x)ER. Then (a, x)ER2, so (a, X)ER C RS. Then HRS 
is a hypergroup. _ 

§4. Relation f3 in semihypergroups 

Recall that with each binary relation R on a set H, a partial hy­
pergroupoid HR = < H; 0> is associated as follows: 

\f(x,Z) E H2, XORX = {y E H I (x,y) E R}, XORZ = XORXUzoRZ. 

X is an outer element for R if 3h E H: (h,x) f/. R2. 
Recall Theorem 8 of this chapter: 

HR is a hypergroup if and only if: 

1. H = ID(R); 

2. H = ID(R); 

3. R c R2; 

4. if x is an outer element for R, then \f a E H, 
(a, x) E R2 ===> (a, x) E R. 

For a relation T on H set HT = < H; 0T > and for two relations R 
and Son H, let RS = {(x, y) I (x, u) E R, (u, y) E S for some u}. 

42. Proposition. Let Rand S be two relations on H. Then for 
all a, b, C E H, we have: 
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(i) (aoRa)oR(aoRa) = U tORt; 
tEaoRa 

(ii) a oRa oRa = a oR a U (a ORa) oR (a ORa); 

(iii) if R C R2, then (a, x) E R2 ~ x E aORaoRa; 

(iv) if a Os a I- 0 ===:!? a OR a I- 0, then 
(aoRa) 0sa = aos aU aORSa; 

(vi) a 0RUS a = aORaUaoSa; a0RnSa = aORanaoSa; 
a 0RuSa 0Rnsa = a oRa oRa U aos a 0sa U a 0RSa U a 0SRa; 

(vii) ifcEID(S)===:!?aoRbI-0, then (aoRb)ose= 
= {t E H I (a,t) E RS or (b,t) E RS or (e,t) E S}; 
if a E ID(S) ===:!? b Os e I- 0, then a OR (b Os e) = 

= {t E H I (b, t) E SR or (e, t) E SR or (a, t) E R}. 

Proof. A straightforward verification. • 
43. Corollary. If R C R2, then x is an outer element for R if and 
only if 3a E H, such that x tl. a OR a oRa. 

44. Remark. If R C R2 then there are no outer elements for R if 
and only if \fa E H, we have aORaoRa = H. 

45. Proposition. The following two conditions are equivalent for 
a relation R on H, such that R C R2 : 

(i) \f (a, e) E H2, we have (R2 - R)(a) C R2(e); 

(ii) if x is an outer element for R, then 
(a, x) E R2 ===:!? (a, x) E R. 

46. Remarks. 

1. If R is a relation on H, such that R C R2, then R is transitive 
if and only if for all a E H, we have a ORa oRa = a ° R a. 
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2. If R is a relation on H, then R C R2 if and only if for all 
a E H, we have a OR aOR a = (a ORa) oR (a ORa). 

3. If R is a symmetric nontransitive relation on H, such that 
R C R2, then H R is a hypergroup if and only if V x E H, we 
have XORXORX = H. 

Proof. "===*" It results by (iii) of Theorem 12 and (iii) of Propo­
sition 42. 

"{:==" The conditions of Theorem 8 are verified. • 
Now, let (H,o) be a semihypergroup. Set 

P(H) = La ai In E IN*; Vi E {1,2, ... ,n}, ai E H}. 

We have: 

Vx E H,xo{3x = {y E H I xf3y} = 

={YEHI3Po EP(H):{x,y}CPo}= U Po. 
PoEP(H);xEPo 

Denote 

PoEP(H);XEPo 

Vn E IN*, U{Po E P(H) I Po n Cn(x) =f 0} = Cn+1(x) 

47. Theorem. Let H be a semihypergroup. Then the relation f3 is 
transitive if and only ifC(x) = C1(x), for all x E H, where by C(x) 
we have denoted the complete closure of x. 

Proof. By Remark 46, 1, it results that f3 is transitive if and only 
if 

VxEH, X0{3X0{3x=X0{3x, 
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We have: 

x~x~x= U a~aUx~x= 
aEx0{3 x 

= {t E H / t E Cl(a), a E Cl(x)} U Cl(x) = 

={tEH/tE U Po, a ECI(x)}UCl(x) = 
PoEP(H);aEPo 

Therefore,,8 is transitive if and only ifVx E H, C2 (x)UC(x) = CI(x), 
that is Vx E H, C2(x) C Cl(x). Then Vn E IN*, Cn+1(x) C Cn(x). 

Indeed, if we suppose Ck(x) C Ck-l(X), where k E IN*, then 
Ck+1(x) = U{Po E P(H) / Po n Ck(x) f= 0} C U{Po E P(H) / 
Po n Ck-l(X) f= 0} = Ck(x). Since C(x) = U Ci(x), it results that 

iEJN* 

,8 is transitive if and only ifVx E H, C(x) = CI(x). 

48. Proposition. Let IH = (H,·) be a semihypergroup such that 
the relation ,8 is not transitive. Then H 13 is a hyper group if and 
only if ,82 = H x H. 

Proof. It results by Theorem 8. 

49. Remarks. Let (H, .) be a hypergroup. 

1. If (x,y) E H2, such that x Ex· y (or (x E y. x) then 
X· Y C X Of3Y (respectively, y. xC xOf3Y)· 

2. Vx E H, if x Ex· x, then x . x C x 013 x. 



Chapter 4 

Lattices 

Introduced by Ch.S. Pierce and E. Schroder and inde­
pendently by R. Dedekind, and afterwards developed by G. 
Birkhoff, V. Glivenko, K. Menger, J. von Neumann, O. Ore 
and others, Lattice Theory is a highly topical field, with 
many applications in mathematics. 

Distributive lattices represent the starting point in 
Lattice Theory; their study is required by more and more 
frequent situations when distributivity is imposed byappli­
cations. 

A weaker condition of distributivity is the modularity, 
introduced by R. Dedekind. 

Modularity and distributivity are characterized in this 
chaper, using hyperstructures, particularly join spaces. 

§1. Distributive lattices and join spaces 

The following hyperoperation was associated with an arbitrary 
lattice (L, V, /\), by J.e. Varlet: 

V ( a, b) E L 2 , aob = {x ELI a /\ b ::; x ::; a Vb}. 

The study of this hyperoperation will be continued in §2. 
The importance of the hyperstructure (L, 0) consists in the fact 

that it is frequently used in machine learning applications. 

121 
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The following proposition can be easily verified: 

1. Proposition. The following properties hold: 

1. \/(a, b) E L2, {a,b} C aob; 

2. \/ (a, b) E L2, aob = boa; 

3. \/ (a, b) E L2, alb i- 0 since 
a E alb = {x ELI x /\ b '.5:. a '.5:. x Vb}; 

4. \/ a E L, ala = L; 

5. \/ (a, b) E L2, alb::1 b if and only if a = b; 

6. if a has the unique complement b, then 
alb = {a} and bla = {b}; 

7. x E alb n bla if and only if a /\ x = b /\ x and a V x = b V x. 

J.C. Varlet [397J obtained the following result: 

2. Theorem. For a lattice L, the following are equivalent: 

(1) L is distributive; 

(2) (L,o) is a join space. 

Proof. (1)===}(2). First of all, we shall verify the associativity of 
the hyperoperation "0". Let a, b, c be arbitrary in L. The least and 
greatest elements of ao(boc) are a /\ b /\ c and a V b V c respectively, 
hence ao(boc) ~ [a /\ b /\ c, a V b V cJ. 

Let us consider an arbitrary element x of [a /\ b /\ c, a V b V cJ. 
If y = (x /\ (b V c)) V (b /\ c), then b /\ e '.5:. y '.5:. b V e, that is y E boe. 
Moreover, a /\ y '.5:. e '.5:. a V y. Indeed, using distributivity, we have: 

a /\ ((x A (b V e)) V (b A c)) = (a /\ x /\ (b V e)) V (a A b /\ e) '.5:. x 

and 

aV((x/\(bVe))V(bAe)) = (aV(b/\e)Vx)/\(aV(b/\e)V(bVc));::: x. 
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Hence 

x E ao(boc) and ao(boc) = [a /\ b /\ c, a V b V c]. 

Similarly, we have (aob )oc = [a /\ b /\ c, a V b V c], whence it follows 
the associativity. 

Now, let us assume that alb n cld =1= 0, that is there exists 
x E L such that a E box and c E dox. We have to prove that there 
exists y E L such that y E aod n boc; which is equivalent to 

(a /\ d) V (b /\ c) ~ Y ~ (a V d) /\ (b V c). 

From b /\ x ~ a ~ b V x and d /\ x ~ c ~ d V x, we deduce 

a /\ d ~ (b V x) /\ d = (b /\ d) V (x /\ d) ~ (b /\ d) V c ~ b V c. 

Since a/\d ~ bVcand b/\c ~ bVc, we have (a/\d)V(b/\c) ~ bVc. 
Similarly, (b /\ c) V (a /\ d) ~ a V d, therefore (a /\ d) V (b /\ c) ~ 

~ (a V d) /\ (b V c), so aod n boc =1= 0. 

(2)==:;.(1). First, let us notice that alb n bid =1= 0 implies 
aod n bob =1= 0 and since bob = {b}, it follows b E aod. 

Therefore albnb/a =1= 0 implies bE aoa = {a}, whence a = b. 
Let us suppose L is not distributive. Then L contains a five­

element sublattice {a, b, c, d, e}, with a V c = b V c = e, a /\ c = 
= b /\ c = d and either a > b or a, b, c mutually non-comparable. In 
both cases, alb contains a and c, but not d. 

We have c E alb n bla and yet a =1= b, contradiction. 
Therefore, L is a distributive lattice. _ 

§2. Lattice ordered join space 

Ordered hypergroupoids and hypergroups have been studied by M. 
Konstantinidou and S. Serafimidis. In the following, an important 
example of lattice-ordered join space is considered, which is that one 
presented in §l. This topic has been explored by Ath. Kehagias 
and M. Konstantinidou and we present here some of their results. 
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Let (L, V, /\) be a distributive lattice. Denote by"::;" the asso­
ciated order. 

3. Notation. The class of intervals of elements of L is denoted by 
J(L), that is: 

J(L) = Ha, bJ I (a, b) E L2, a::; b}. 

We consider on the distributive lattice (L, V, /\) the following 
hyperoperation 

'if (a, b) E L 2 , aob = {x ELI a /\ b ::; x ::; a Vb} = [a /\ b, a V b]. 

4. Proposition. We have: 

J(L) = {aob I (aob) E L2}. 

Proof. If [a, bJ E J (L), then, by definition, we have a ::; b so 
aob = [a /\ b, a V bJ = [a, b]. On the other hand, any aob is an 
interval, by definition. _ 

The following properties of intervals [a, bJ (where (a, b) E L2, 
a ::; b), are useful to prove again that if (L,::;) is a distributive 
lattice, then (L, 0) is a hypergroup. 

5. Proposition. Let (a, b, x, y) E L4, such that x < y and a ::; b. 
We have: 

(i) ao[x, yJ = [a /\ x, a V yJ; 
(ii) [a, bJo[x, yJ = [a /\ x, b V yJ. 

Proof. i) We have ao[x, y] = U aoz. If u E ao[x, y], then there 
x;5;z;5;y 

is Zu E [x, y], such that a /\ Zu ::; U ::; a V Zu' 

Since x ::; Zu and Zu ::; Y it follows a /\ x ::; a /\ Zu and 
a V Zu ::; a V y. 
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Therefore, a /\ x ~ u ~ a Vy, whence U E [a /\ x, a Vy]. Hence 
ao[x, y] ~ [a /\ x, a V y]. 

On the other hand, if v E [a/\x, aVy] and we set Zv = (vVx)/\y, 
then, by distributivity, we also have Zv = (v /\ y) V x. Then x ~ 
~ (v /\ y) V x = Zv = (v V x) /\ Y ~ y, that is Zv E [x, y]. We also 
have 

zv/\a = [(vVx)/\y]/\a = (vVx)/\(y/\a) = (v/\y/\a)V(x/\y/\a). 

From v /\ y /\ a ~ v and x /\ y /\ a = x /\ a ~ v, it follows Zv /\ a ~ v. 
Similarly, we can verify that v ~ Zv V a. So, Zv /\ a ~ v ~ Zv V a, 
whence v E aozv. Hence, Zv E [x, y] and v E aozv, which implies 
that v E ao[x, y]. Thus, [x /\ a, y V a] ~ ao[x, y]. We can conclude 
that [x /\ a, y V a] = ao[x, y]. 

ii) First of all, we shall verify that [a, b]o[x, y] ~ [a /\ x, b V y]. 
If U E [a, b]o[x, y] = U zo[x, y] = U [z /\ x, z V y], then there 

a<z<b a<z<b 
is Zl E [a, b], such that ZI /\ x ~ U ~- z~ V y. On the other hand, 
a/\x ~ ZI/\X and ZI Vy ~ bVy, whence a/\x ~ Zl/\X ~ U ~ ZI Vy ~ 
~ b Vy, so U E [a /\ x, b V y]. Therefore [a, b]o[x, y] ~ [a /\ x, b Vy]. 
Conversely, let v E [a /\ x, b V y], that is a /\ x ~ v ~ b V y. Set 
Zl = (v V x) /\ Y = (v /\ y) V x and Z2 = (v Va) /\ b = (v /\ b) Va. It 
easily results that ZI E [x, y] and Z2 E [a, b]. We have 

Zl /\ Z2 = [(v V x) /\ y] /\ [(v Va) /\ b] = [v V (a /\ x)] /\ [b /\ y] = 
= [v /\ (b /\ y)] V [a /\ x] ~ v. 

Similarly, we verify that v ~ Zl V Z2, so v E ZlOZ2 ~ [x, y]o[a, b]. 
Therefore, [a, b]o[x, y] = [a /\ x, b V y]. • 

6. Proposition. For any (a, b, c) E L3 , the following properties 
hold: 

(i) (aob)oc = ao(boc); 

(ii) aoL = L. 
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Moreover, Jlu E L such that V x E L, we have luoxl = l. 

Proof. i) (aob)oc = [aAb, aVb]oc = [aAbAe, aVbVe], by the previous 
proposition. Similarly, ao(boe) = ao[bAc,bVc] = [aAbAc,aVbVe]. 

ii) For any a E L, we have aoL = Uaox 2 Ux = L. On 
xEL xEL 

the other hand, we have aoL ~ L, so aoL = L. Finally, notice that 
for any a ELand x E L, x :f a, we have {a, x} C aox, therefore 
laoxl ;::: 2. • 

7. Corollary. (L,o) is a hypergroup. 

8. Proposition. For any (a, b) E L2, we have that (aob,o) is a 
subhypergroup of L. 

Proof. Let (a, b) E L2. We shall verify that for any x and y in 
(a, b), we have: 

1) xoy ~ aob and 2) xo(aob) = aob. 

1) We have aAb:S; xAy :s; xVy :s; aVb, that means xoy ~ aob. 
2) We have xo(aob) = [xAaAb,xVaVb] = [aAb,aVb]' since 

a A b :s; x :s; a V b. 
Therefore, x 0 (aob) = aob. 

9. Proposition. Let (a, b, c) E L3. We have: 

(i) ao(b V c) = (aob) V (aoe); 

(ii) ao(b A c) = (aob) A (aoe). 

• 

Proof. i) Let u E ao(b V c) and set x = (a V b) Au, Y = (a V c) Au. 
From ao(bV c) = [a A (b V e),a V b V e] it follows u:S; a V b V c. We 
also have x V y = [(a V b) A u] V [(a V c) Au] = (a V b V c) Au = u. 

On the other hand, from x = (a Vb) A u it follows x :s; a V b. 
From a A (b V c) :s; u, we obtain a A b :s; u; so a A b :s; (a Vb) Au = x. 
Thus, x E aob. Similarly, we can verify that y E aoc. Therefore, 
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Vu E ao(b V e), ::Ix E aob, ::Iy E aoe such that u = x V y. Hence 
ao(b V e) ~ (aob) V (aoe). Now, consider v E (aob) V (aoe). Then 
there is x E aob and y E aoe, such that v = x V y. So, a 1\ (b V e) = 
= (a 1\ b) V (a 1\ e) ~ x V y = v. Similarly, v ~ a V (b V e). Hence 
v E ao(b V e), that means (aob) V (aoc) ~ ao(b V e). Therefore, 
ao(b V e) = (aob) V (aoe). 

ii) It follows by duality. • 
10. Definition. The structure (L, ~, *) is called a strictly lattiee­
ordered hypergroup (respectively, join space) if and only if 

(i) (L,~) is a lattice; 

(ii) (L, *) is a hypergroup (respectively a join space); 

(iii) V(x,y) E L2, xoy is an interval; 

(iv) V(a,x,y) E L 3 , we have: 

a * (x V y) = (a * x) V (a * y) and 

a * (x 1\ y) = (a * x) 1\ (a * y). 

11. Remark. The structure (L,~, 0) is a strictly lattice-ordered 
join space, according to Theorem 2. 

12. Remark. In the hypergroup (L, 0), we have: 

V (a, b) E L2, a/b = {x ELI a E xob} = {x ELI xl\b ~ a ~ xVb}. 

From here it follows Va E L, a E a/b. 

13. Proposition. For any (a, b, e, d) E L 4 , the following conditions 
are equivalent: 

1) a 1\ d ~ b V e and b 1\ e ~ a V d; 

2) aod n boe =I- 0. 
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Proof. 1)=====?2). From a /\ d ~ b V e and b /\ e ~ a V d, we obtain 
a /\ d ~ (a /\ d) V (b /\ e) ~ a V d and b /\ e ~ (a /\ d) V (b /\ e) ~ b V e. 
In a similar way, it follows: 

a /\ d ~ (a V d) /\ (b V e) ~ a V d and 

b /\ e ~ (a V d) /\ (b V e) ~ b V e. 

Moreover, we have 

(a /\ d) V (b /\ e) ~ (a V d) /\ (b V e). 

Set u = (a /\ d) V (b /\ e) and v = (a V d) /\ (b V e). By the previous 
inequalities we obtain: [u, v] ~ (aod) n (boe), so 2) holds. 

2)=====?1) Let p E aod n boe. Then a /\ d ~ p ~ b V e and 
b /\ c ~ p:S; a V d, whence we obtain 1). • 

§3. Modular lattices and join spaces 

In the following, the hypergroupoids attached to semi-lattices and 
lattices are studied. Moreover, characterizations for modular lat­
tices are presented. Results on this direction have been obtained 
by St. Comer, J. Mittas, M. Konstantinidou and afterwards by G. 
Calugareanu and V. Leoreanu. In the following, we mention some 
of them. 

Let (L,~, V) be a semi-lattice and let us consider the following 
hyperoperation on L, introduced by Nakano [298]: 

V{x,y) E L2, xffiy = {z E T I zVx = zVy = xVy}. 

We notice that 

V{x,Y)EL2, xVyExffJy. 

< L, ffJ > is called the attached hypergroupoid to the semi-lattice 
(L,:s;, V). Notice that < L, ffJ > is a quasi-hypergroup and if L has 
a zero, then 0 is a scalar identity of < L, ffJ > . 



APPLICATIONS OF HYPERSTRUCTURE THEORY 129 

14. Theorem. (Comer) If < L,:S;> is a modular lattice with zero, 
then (L, EB) is a canonical hypergroup. 

We shall prove this theorem by a different way (see Lemma 24 
- Prop. 35). 

15. Proposition. For any (x,y,z,w) E L4 , we have: 

(x EB y) n (z EB w) -::j 0 ===} (x EB z) n (y EB w) -::j 0. 

Proof. Let t E (x EB y) n (z EB w). Then 

t E x EB Y ===} Y E x EB t ===} Y E x EB (z EB w) = (x EB z) EB w ===} 

===} 3s E x EB z, yEs EB w ===} s E Y EB w. 

So, (xEBz)n(YEBw)-::j0. 

16. Corollary. For any (x, y) E L2, we have 

(x EB x) n (y EB y) -::j 0. 

• 

17. Proposition. If the hypergroupoid < L, EB > associated with 
a semi-lattice is a hypergroup, then it is a join space. 

Proof. It follows by the above proposition and the equality: 
V(x,y) E L2, x/y = xEBY. • 

Let us suppose in the following that < L, EB > is a hypergroup. 

18. Proposition. For anyn E IN·, Vi E {1,2, ... ,n}, Xi E L, we 
have 

n 

nXi EB Xi -::j 0 
i=l 

Proof. We prove it by induction on n. 



130 

i=l 
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For n = 2 we have just verified the thesis, so we suppose 

n-l 

Let z E nXi$Xi and wE xn$xn- We have z$znw$w i- 0, 
i=l 

whence there is u E z$znw$w. We have u ::; z and u ::; w, hence 
n 

for any i E {1, 2, ... , n}, u ::; Xi, whence u E nXi $ Xi. 
i=l 

Let us consider now 

I=nX$X 
xEL 

• 

and suppose that I i- 0. If z E I, then we have z E x$x, that means 
z ::; X, for any X E L. So, L has a minimum, such that z = z $ z. 
It follows: 

19. Proposition. If I i- 0, then L has mzmmum, which we 
denote by 0 (it is a scalar) and the attached hypergroup (L, $) is a 
canonical one and conversely, if (L, $) is a canonical hypergroup, 
then I i- 0. 

20. Remark. For any X E L, we have that hx = X $ X is an 
invertible subhypergroup of the hypergroup (L, $). 

21. Proposition. Let h be a subhypergroup of < L, $ >. Then 
h= U(X$x). 

xEh 

Proof. Let z E h. It follows z $ z ~ U x $ x and since z E z $ z it 
xEh 

follows that z E U x $ x, hence h c U x $ x c h, so we have the 
xEh xEh 

equality. • 
22. Remark. For any (x,y) E L2, we have: 
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(i) hxy = (x EB x) n (y EB y) is a subhypergroup of L. 

(ii) if there is inf (x, y) = x /\ y, then 
x EB x n y EB Y = (x /\ y) EB (x /\ y) = hxl\y. 

23. Proposition. For any (x, y) E L2, one has 
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(x EB x) U (y EB y) ~ (x EB x) EB (y EB y) = (x V y) EB (x V y) = hxvy . 

Proof. Let us consider the following equivalence relation on L, 
denote by Mod a, where a E L : 

x == y(moda) {::::::} a V x = a Vy. 

The equivalence class of x is 

Ca(x) = {y E T I a V x = a Vy} 

First of all, let us prove that 

v (x, y) E T2, Ca(x) EB Ca(y) = (a V x) EB (a V y). 

Indeed, if z E Ca(x) EB Ca(y), then 3xl E Ca{x), 3yl E Ca(y) such 
that z E Xl EB yl, so Z V Xl = Z Vyl = Xl V yl, whence z V (a V Xl) = 

= Z V (a V y') = (a V x') V (a V y'), hence z E (a V x) EB (a V y). Then, 
Ca(x) EB Ca(y) ~ (a V x) EB (a V y). Obviously, we have 

(a V x) EB (a V y) ~ Ca(x) EB Ca(y). 

Then Ca(x)EBCa{y) = (aVx)EB{aVy). On the other hand, V x E L, 
we have Ca(x) = XEB(aEBa). Indeed, if z E Ca(x), then aV z = aVx, 
hence zEB(aEBa) = xEB(aEBa), whence z E xEB(aEBa). Conversely, if 
z E xEB(aEBa), then zEB(aEBa) ~ xEB(aEBa) so zEB(aEBa) = xEB(aEBa), 
hence a V z = a V x, that means z E Ca(x). 

We have (x V y) EB (x V y) = CAy) EB Cx(Y) = [y EB (x EB x)] EB 
EB[yEB(xEBx)] = (xEBx)EB(yEBy). If z E (xEBxU(yEBy), then z ~ xVy, 
that means z E (xVy)EB(xVy), so (xEBx)U(YEBY) ~ (xEBx)EB{yEBy) . 

• 
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Now, let £ be a lattice and we define the hyperoperation on £, 
as above: for each (a, b) E £2, aEBb = {x E £ I aVx = bVx = aVb}. 

24. Lemma. For (a, b, c) E £3, if S = {y E £ I a V b V Y = 

= a V c V y = b V c V y = a V b V c} then (a EB b) EB c ~ S. 

Proof. Let y E (a E9 b) E9 c. Then::lx E L : a V x = b V x = a V b 
and x V c = x V y = y V c and hence (a Vb) V Y = (a V x) V y = 

{ (a V x) V c = (a V b) V c . 
= aV(xVy) = aV(xVc) = a V (c V y) = (a V c) V y respectIvely 

(a V b) V Y = (b V x) V y = b V (x V y) = b V (c V y) = (b V c) V y. 
Therefore yES. • 

25. Corollary. If YES, then b V c ~ b V y V a; b V c ~ c V y V a 
and y V a ~ y V b V c; y V a ~ a V b V c. 

26. Lemma. If £ is a modular lattice, then S ~ a EB (b EB c). 

Proof. For an arbitrary yES set z = (y Va) 1\ (b V c). We verify 
z E b E9 c and yEa EB z. 

Indeed, bVz = bV[(yVa)l\(bVc)]ffiOd(bVyVa)l\(bVc) * bVc 
and, similarly, c V z = b V c. On the other hand, 

yVz=yV[(bVc)l\(yVa)]ffiOd(bVc)l\(yva) * yVa 

and, similarly, a V z = y V a (the *-equalities hold, according to the 
above consequence). Hence yEa EB z ~ a EB (b EB c). • 

27. Corollary. In a modular lattice, we have: V(a,b,c) E £3, 
(a E9 b) EB c = a E9 (b E9 c). 

Proof. We already have (a EB b) EB c ~ S ~ a EB (b EB c). The 
subset S is invariant to permutations of {a, b, c} so we also obtain 
(b E9 c) E9 a ~ S. By the commutativity, we have a EB (b EB c) ~ S 
and so a EB (b EB c) = S. Analogously, (a EB b) EB c = S. • 

28. Corollary. If £ is a modular lattice, then < £, EB > is a 
semihypergroup. 
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29. Remark. In an arbitrary lattice, the hyperoperation "EB" is 
not generally associative. 

Indeed, in the 5-elements non-modular lattice N5 (N5={ 0, a, b, c, I}, 
where 0 < b < a < 1, 0 < e < 1 and aile, bile, where" II" means 
that the corresponding elements are not comparable) one verifies 
that (a EB b) EBe = {I} # {l;c} = a EB (bEB c). 

Moreover, the following interesting characterization holds 

30. Theorem. The hyperoperation "EB" is associative if and only 
if the lattice L is modular. 

Proof. If L is not modular, using a well-known characterization, 
L contains a 5-elements sublattice isomorphic to the above one: 
{m,a,b,e,M}, where m < b < a < M, m < e < M and aile, bile. 

But then c E a EB (b EB c) and c fj. (a EB b) EB c, hence "EB" is not 
associative. 

Indeed, e E {y ELI a V y = M V Y = a V M = M} = a EB M ~ 
~ aEB(bEBe), because ME {x EL I bVx = cVx = We = M} = bEBe. 
Finally, aEBb = {XEL I aVx = bvx = aVb = a} = {XEL I x ::; a = 
= x Vb} so that a EB b n {x ELI x ::; b} = 0. On the other hand, 
c E (a EB b) EB e = {y ELI x Vy = e Vy = x V e, where x E a EB b}. 
So, if x E aEBb, then x::; e, whence x::; inf(a; c} = m and so x::; b, 
contradiction with the above void intersection. _ 

31. Lemma. < L, EB > is a quasi-hypergroup. 

Proof. Indeed, V (a, b) E L2; 3x = aVb: a E bEBx = xEBb, because 
a V x = b V x = a V b. Hence Vb E L : b EB L = L EB b = L. _ 

32. Corollary. For a modular lattice L, < L, EB > is a hypergroup. 

33. Remark. Each element in L is a partial identity in < L, EB > . 

Indeed, x E x EB x holds for each x E L. 

34. Rem~k. For an arbitrary lattice, V(a,b,c) E L3:a E b EB c 
==> b E a EB e; c E a EB b. 
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35. Proposition. If L is a modular lattice with zero, then 
< L, EI1 > is a canonical hypergroup. 

Proof. Indeed, 0 is the unique scalar identity (that is Va E L, 
{a} = 0 EI1 a and for any identity we have e = e EI1 0 = 0 EI1 e = 0; 
each element has a unique inverse: itself (indeed, 0 E a EI1 a and 
o E a EEl b ===} a = b) and the reversibility follows from the previous 
remark. _ 

Moreover, 

36. Theorem. Let L be a modular lattice. The following condi­
tions are equivalent: 

(i) < L, EI1 > is a regular hypergroup; 

(ii) < L, EI1 > is a regular reversible hypergroup; 

(iii) < L, EEl > is a canonical hypergroup; 

(iv) L has a zero. 

Proof. According to the proof of the above theorem it remains 
only to remark that if m is the identity then Va E L we have 
a E m EEl a = {x ELI m V a = m V x = x V a} and so Va E L, 
m~ a. _ 

37. Theorem. For a modular lattice L, < L, EI1 > is a join space. 

Proof. We only have to verify that alb n cl d i- 0 implies (a EI1 d) n 
n(bEElc) i- 0 where alb = {x ELI a E xEl1b}. But alb = aEl1b 
and so we have to verify that if x E (a EEl b) n (c EI1 d) (that is 
a V x = b V x = a V band c V x = d V x = c V d)) then there is 
an element yEa EEl d n b EEl c. Set y = (a V d) 1\ (b V c). We have 

aVy = aV[(aVd)!\(bVc)] mod (aVd)!\(aVbVc) = (aVd)!\(aVxVc) = 

= (a V d) !\ (a V c V d) = a V d and d V Y = d V [(a V d) !\ (b V c)] mod 

(aVd)!\(bVcVd) = (aVd)!\(bVxVd) = (aVd)!\(aVbVd) = aVd 
so that yEa EI1 d and, similarly, we have y E b EI1 c. _ 
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Notice that Theorem 37 can also be obtained from Proposition 
17. From Theorem 30 and theorem 37 it follows 

38. Corollary. The lattice (L, V, ,,) is modular if and only if 
< L, E9 > is a join space. 

39. Remark. The hypergroup < L, E9 > is not complete. 

We can also consider the dual hyperoperation, that is V (a, b) E L2, 
a ®b = {x ELI a" x = b" x = a" b}. By duality, the following 
results are verified: 

40. Theorem. Let L be a modular lattice. The following condi­
tions are equivalent: 

(i) < L, ® > is a regular hypergroup, 

(ii) < L, ® > is a regular reversible hypergroup, 

(iii) < L, ® > is a canonical hypergroup, 

(iv) L has a greatest element. 

41. Theorem. For a modular lattice L, < L, ® > is a join space. 

42. Theorem. For a lattice L, the following conditions are equi­
valent: 

(i) L is modular; 

(ii) < L, E9 > is a hypergroup; 

(iii) < L, ® > is a hypergroup. 

43. Proposition. Let L be a modular lattice. A subset / of L is an 
(invertible) subhypergroup of < L, E9 > if and only if / is an ideal 
of L. 

Proof. If / is a subhypergroup of < L, E9 >, then for every (a, b) E /2 
we have a V bE a E9 b ~ /. Moreover, if a E / and x ::::; a; x E L 
then x E a E9 a ~ / and so, / is an ideal of L. 
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Conversely, let I be an ideal of L. For (a, b) E 12 , if tEa EI1 b, 
then t ::; a V b and so tEl. For every (a, b) E J2, there is an element 
x = a vb E I such that a E b EI1 x. Hence, I is a subhypergroup of 
< L, EI1 > . 

We finally remark that if I is a subhypergroup of < L, EI1 > 
then it is invertible. 

Dually, it follows the following 

44. Proposition. Let L be a modular lattice. A subset I of L is 
an (invertible) subhypergroup of < L, ® > if and only if I is a filter 
of L. 

Moreover, we have 

45. Proposition. If L is a modular lattice, the only ultraclosed 
subhypergroup of < L, ® > (resp. < L, ® » is < L, EI1 > (resp. 
< L, ® ». 
Proof. Suppose that I is a ultraclosed subhypergroup of L. If 
I i= L, set a t/. I and tEl. Then a V tEl and so 

a V t E (a EI1 I) n (a EI1 (L - I». 

Hence (a EI1 I) n (a EI1 (L - I) = 0 holds for every a E L only if 
I=L. 

46. Corollary. If L is a modular lattice, then 

Now, we shall mention some important (for which follows) pro­
perties of the join space < L, EI1 > associated with a modular lattice 
(L, V, 1\). 

One can verify these properties, using the equivalence relation 

(1) x E a EI1 a ¢:=} x ::; a. 

47. Proposition. For a modular lattice L, the associated join 
space < L, EI1 > satisfies the following properties: 
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(i) Va E L, a E a EB a; a EB a is a subhypergroup of < L, EB >; 

(ii) V (a, b) E L2, n xEBx=(aVb)EB(aVb); 
{a,b}<;;;x$x 

(iii) V (a, b) E L2, aEBanbEBb ~ (a/\b)EB(a/\b) and a/\b E aEBanbEBb; 

(iv) V(a,b) E L2, {a,b} ~ aEBb ===? a = b; 

(v) Va E L, a EB a EB a = a EB a; 

(vi) V (a, b) E L2, a EB b = [a EB (a V b)] n [b EB (a V b)]; 

(vii) if a < b, aEBb = {b}U{xEL I x < b, xlla, /JyEL, a < y < b, 
x < y}, where we denote by xlla two incomparable elements 
of L. 

In the following, we shall characterize the join space associated 
with modular lattices. 

We notice that in a join space < L, EB >, associated with a 
modular lattice the following condition holds: 

(0) 
V(a,b) E L2, 3x E L, 3t E L, {a,b} ~ xEBx, 

n x EB x = t EB t, a EB b = a EB t n b EB t. 
{a,b}<;;;x$x 

Moreover, if a E t EB t - {t}, then 

{UEL I UEtEBt-{t}, uljta EB a, aljtuEBu, /JYEL,} 
a EB t={t} U . 

aEyEBy-{y}, UEYEBY-{y}, YEtEBt-{t} 

The condition (0) is equivalent to the set of conditions (ii), (vi) 
and (vii), written using only the hyperoperation "EB" (not the order 
" ::;"). 

48. Theorem. A join space < H, 0 > is associated with a lattice 
(H, V, /\) if and only if it satisfies (0) and the following conditions: 

(1) V (a, b) E H2, alb = a EB b; 
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(2) Va E H, a EB a EB a = a EB a; 

(3) V(a,b)EH2, 38EaEBanbEBb, aEBanbEBb~808; 

(4) V(a,b)EH2, {a,b}C;;aEBb~a=b. 

Proof. From Proposition 47, it follows that the above conditions 
are necessary, For the sufficiency, we define a binary relation on H 
as follows: 

a ::; b {::=} a E b EB b .& b E a EB b. 

This is an order on H according to (1) [reflexivity: Va E H, a E aE!1a] , 
[transitivity: a E bEBb, b E cE!1c ==> a E cE!1cE!1cE!1c = cEBcE!1c = cE!1c] 
and again (1) [antisymmetry]. 

In order to obtain a lattice structure, for arbitrary elements 
a, b E H, we consider t, where 

n xE!1x=tE!1t 
{a,b}C;;xE!)x 

and verify that t = sup( a, b). Indeed, {a, b} E t E!1 t so that a ::; t, 
b ::; t; moreover, if a ::; 8, b ::; 8, then 

tEtEBt= n xEBXC;;8E!18 
{a,b}C;;xE!)x 

because {a, b} E 8 EB 8 so t ::s 8. The antisymmetry proves that t is 
unique. On the other hand, for an arbitrary element ( a, b) E H2, 
we consider 8, such that 

and verify that 8 = inf(a, b). Obviously, we have 8::; a, 8::; b and if 
u ::; a, U ::; b then u E aEDanbE!1b ~ 8E!18, whence u ::; 8. The element 
8 is unique because {81' 82} ~ a E!1 a n bE!1 b C;; 81 E!1 81 n 82 E!1 82 implies 
81 E 82 E!1 82 and 82 E 81 EB 81 and so 81 = 82. Hence, (H, sup, inf) is 
a lattice. Its modularity is easily checked. 

In what follows, we use the standard notations 

sup(a, b) = a V b, inf(a, b) = a t\ b. 
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Now, we verify the inclusion a$b ~ {x E Hla V x = b V x = a V b} : 
let x E a$b; from {a,b} ~ t$t where t = aVb it follows x E a$b ~ 
t$t$t$t = t$t and so x E (aVb)$(aVb) that is x ~ aVb. Hence 
aVx ~ aVb and bVx ~ aVb. But {b,x} ~ (bVx)$(bVx) and so 
b$x ~ (bVx)$(bVx)$(bVx)$(bVx) = (bVx)$(bVx). Using 
(1), we have x E a $ b = alb and so a E b $ x ~ (b V x) $ (b V x) 
whence a::; bVx so aVb ~ bVx. We obtain aVb = bVx. Similarly, 
we have a Vb = a V x and hence x E {z E Hla V z = b V z = a Vb} . 

Conversely, let x E H be such that a V x = b V x = a V b. 
It follows x ::; a V x = b V x = a V b. 
We distinguish the following cases: 

Case 1: if a = b then x ~ a and so x E a $ a = a $ b. 

Case 2: if b < a then x ::; a = a V b. If x = a nothing is to be 
proved. If x<a then b~x is not possible (otherwise a = b V x = x) 
nor b ~ x (otherwise a = b V x = b) and so bllx. Moreover, 
there is no element y E H such that b<y<a, x<y (otherwise 
a = b V x ~ y < a). Therefore we obtain xEa $ b, using (a). 

Case 3: Similarly, if a < b, one verifies that x E a $ b. 

Case 4: if allb then a < a V b, b < a V b. We first check that 
x E a $ (a V b). This is clear for x = a V b so in what fol­
lows we suppose x "1= a V b. Now x ~ a =9 a V x ::; a <====> 
a V b ~ a -¢=:::> a V b = a and analogously a ::; x =9 x = a V b, 
both contradictions, so that xlla and x < a V b. As above x E 
E {a Vb} U {u E Hlu < a V b, ulla, 13y E H, a < y < a V b, u < y} = 
=a$(aVb). 

Similarly, x E b $ (a Vb) and so x E a $ (a Vb) n b $ (a Vb) = 
= a $ t n b $ t. Hence, by the condition (a), it follows x E a $ b 
and this completes our proof. _ 

49. Lemma. Let (L, V, /\) be a lattice and f : L ~ L be a bijective 
map. The following conditions are equivalent: 

a) V (a,b) E L2, f(a V b) = f(a) /\ f(b); 
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b) V (a, b) E L2, f(a tfi b) = f(a) ®f(b). 

Proof. (a)==:::}(b). Clearly, f(atfib) = {J(x) I x E L; xVa = xvb = 
= a V b} and so f(x) E f(a) ®f(b), by (a). 

Conversely, if t E f(a) ®f(b), there is an element x E L, such 
that t = f(x), since f is onto, and so f(xVa) = f(xV b) = f(a V b), 
again by (a). Since f is an one-to-one map, it follows x E atfib and 
t E f(a EfJ b). 

(b)==:::}(a). For every x E a tfi b, it follows f(x) E f(a) ®f(b) 
and so f(x) 1\ f(a) = f(x) 1\ f(b) = f(a) 1\ f(b) :S f(x). Set x = 
= a V b we obtain f(a) 1\ f(b) :S f(a V b). Conversely, observe that 
f(x) E f(a) ®f(a) holds for each x E a tfi a (and each a E L). 
Hence f(a) = f(x) 1\ f(a) whence f(a) :S f(x). Again, setting 
x = a V b, we have f(a V b) :S f(a). Similarly, f(a V b) :S f(b) and 
so f(a V b) :S f(a) 1\ f(b). 

Dually, it follows the following 

50. Lemma. Let (L, V, 1\) be a lattice and f : L -t L be a bijective 
map. The following conditions are equivalent: 

(a') f(a 1\ b) = f(a) V f(b); V (a, b) E L2; 

(b') f(a ®b) = f(a) tfi f(b); V (a, b) E L2. 

51. Remark. If (L, V, 1\) is a Boole lattice and f : L -t L is 
defined by f(a) = a', Va E L, then all the above conditions are 
fulfilled. 

52. Remark. The condition (a) characterizes the hypergroup 
isomorphisms f : < L, tfi > ---t < L, ® > . 

§4. Direct limit and inverse limit 
of join spaces associated with lattices 

In this paragraph, we prove that the direct limit (inverse limit) of 
a direct (respectively, inverse) family of join spaces associated with 
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modular lattices is also a join space associated with a modular 
lattice. 

We have utilised the notions of direct limit and inverse limit 
done by Gratzer in [447]. 

If (H, V, 1\) is a modular lattice, then we can associate (as in 
§3) a join space structure on H as follows: 

V{x, y) E H2, X 0 Y = {z E H I x Vy = x V z = y V z} 

Let us denote by JSL the class of join spaces associated with mo­
dular lattices, as above. 

In the following, we shall utilise the following result proved in 
the previous paragraph. 

53. Theorem. A join space < H,o > belongs to the class JSL iff 
it satisfies the following conditions: 

1) V{a,b)EH2, a/b=aob; 

2) V{a,b) EH2, aoaoa=aoa; 

3) V{a,b)EH2, ::IsEaoanbob, aoanbob~sos; 

4) V{a,b) EH2, {a,b} ~aob~a=b; 

5) V{a,b) E H2, ::Ix E H, ::It E H, {a,b} ~ xox, n x 0 x = tot, a 0 b = a 0 t n bot; 
{a,bKxox 

6) Va E bob - {b}, we have 

a 0 b = {b} U {u E H I u E bob - {b}, u rJ. a 0 a, a rJ. u 0 u; 
;By E H, a E yo Y - {y}, u E yo Y - {y},y E bob - {b}}. 

1. Direct limit of a direct family of join spaces associated 
with modular lattices 

54. Definition. A family {(Hi,0ihEI of join spaces is called a 
direct family if: 
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1) (I,~) is a directed partially ordered set; 

2) \I(i,j) E 12 , we have i =1= j ~ Hi n Hj = 0; 

3) \I(i,j) E 12 , i ~ j, there is a homomorphism t.{Jij : Hi -t Hj 
such that if i ~ j ~ k, then t.{Jjk ° t.{Jij = t.{Jik and \Ii E I, t.{Jii is 
the identity mapping. 

Let us define on H = UHi' the following equivalence relation: 
iE] 

X rv Y iff the following implication is satisfied: (x, y) E Hi X Hj =? 

3k E I, k ~ i, k ~ j, such that t.{Jik(X) = t.{Jjk(Y). 
If Xi E Hi and i ~ j, we denote t.{Jij(Xi) by Xj and we consider 

H = {x I x E H} the set of equivalence classes. 
H is a hypergroup with respect to the following hyperopera­

tion: 

x ° y = {z 13i E I, 3Xi Ex n Hi, 3Yi E Y n Hi, 
3zi E z n Hi : Zi E Xi 0i Yi} 

and it is called the direct limit of the direct family {(Hi, 0i)}iE]. 

55. Proposition. If {(Hi, 0i) hE] is a direct family of semihyper­
groups, such that \Ii E I, 3k E I, i ~ k, for which (Hk, @k) is a 
join space, then (H, *) is a join space. 

For each i E I, we shall associate the join space (Hi,oi) with 
the modular lattice (Hi, Vi, /\i). 

So, \I(Xi' Yi) E HI, we have: 

Xi 0i Yi = {Zi E Hi I Xi Vi Yi = Xi Vi Zi = Yi Vi Zi}. 

56. Theorem. The direct limit of a direct family of semihyper­
groups, {(Hi,Oi)hE], such that\liEI, 3kEI, k ~ i: (Hk,ok)EJSL, 
is a join space (H, 0) which belongs to JSL. 

Note. To simplify the notations, we shall denote Hi E JSL instead 
of (Hi, 0i) E JSL. 
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Proof. We shall verify the conditions of the Theorem 53. 

- -2 
1) \I(a, b) E H , we have 

alb = {c E H I a E b 0 c} = {c I 3i E I : ai E bi 0i Ci} = 
= {c I 3k E I, k ~ i : Hk E JSL, Ck E aklbk = ak Ok bk} = 

= {c ICE a 0 b} = a 0 b, 

2) \la E H, we have 

a 0 a 0 a = Ufo a = U {c E H I 3i E I : Ci E ti 0i ail = 
tEaoa tEaoa 

= {c E H I 3i E I : Ci E ti 0i ai, 3j E I : tj E aj OJ aj} = 

= {c E H I 3k E I, k ~ i, k ~ j : Hk E JSL, 

Ck E tk Ok ak, tk E ak Ok ad = 

= {C E H I 3k E I; Ck E ak Ok ak ok ak = ak Ok ak} = a ° a; 
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- -2 _. 
3) \I(a, b) E H , we shall prove that 38 E H, such that 

8 E a ° a n bob and a ° a n bob c 8 ° 8. 
Indeed, if f E a ° a n bob, then 3i E I : ti E ai 0i ai and 

3j E I : tj E bj OJ bj , hence 3k E I, k ~ i, k ~ j : Hk E JSL and 
tk E ak Ok ak n bk ok bk C Sk ok Sk, where Sk E ak Ok ak n bk ok bk· 
Therefore f E 8 08, whence a ° a nbo be so 8 and sEa 0 a nbo b. 

4) Notice that \la E H, a E a ° a, since 3k E I, such that 
Hk E JSL, so \lak E Hk, ak E ak Ok ak· 

- -2 --
On the other hand, if (a, b) E H such that {a, b} C a ° b, then 

3i E I: ai E aioibi and 3j E I: bj E ajojbj , whence 3k E I, k ~ i, 
k ~ j : Hk E JSL and {ak' bk} C ak Ok bk, hence ak = bk. So, a = b. 

5) We shall prove that \I(a,b)EH2 , 3(x,f)EH2:{a,b} C xox, n xox=fof and aob=aofnbof. Indeed, since 3kEI,Hk EJSL 
{a,b}Cxox 

it follows 3Xk E Hk : {ak,bd C Xk Ok Xk, whence {a,b} C x ox. 
Moreover, 3tk E Hk : n Xk Ok Xk = tk Ok tk, that means 

{ak,bk}Cl:kokXk 
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{ak,bd C tkoktk C XkOkXk, for any Xk : {ak,bk} C XkOkXk, whence 
{a, b} C lof C xox, for any {a, b} C XOX. Hence, n xox = lol. 

{ii,b}CXox 

On the other hand, ak Ok bk = ak ok tk nbk ok tk, since Hk E JSL. 
Let c E a ° b. It follows 3i E I : C;, E ai 0i bi· Let j E I, j 2: i, 

such that Hj E JSL. We have Cj E aj OJ bj = aj OJ tj n bj OJ t j . So, 
cEaolnbol. 

Conversely, if ii E a ° l n b ° l, then 3i E I : Ui E ai 0i ti and 
3j E I : Uj E bj OJ tj . 

By hypothesis, it follows 3k E I, k 2: i, k 2: j such that 
Hk E JSL. One obtains Uk E ak ok tk n bk ok tk = ak ok bk, hence 
ii E a ° b. 

Then, a ° b = a ° l n b ° l. 
6) Let bE H and a E bob - {b}. We denote by A the set 

{ii E H I ii E bob - {b}, ii ¢ a ° a, a ¢ ii ° ii, 
fljj E H: a E yoy - {y},ii E yoy- {y},y E bob- {b}}. 

We shall prove that a ° b = {b} U A. 

For any i E I, we denote by Ai the set: 

{U; E Hi I u; E bi 0i bi - {bi }, Ui ¢ ai 0i ai, ai ¢ Ui 0i Ui, 

lJYi EHi:ai E Yi 0i Yi-{Yi}, Ui E Yi 0i Yi-{Yi}, Yi E bi 0i bi-{bi}}. 

Let ii.E a ° b, where a E bob - {b}; so, 3i1 E I : Ui1 E ail Oil bit. 
Since a E bob - {b}, it follows that 3i2 E I : ai2 E bi2 0iz biz and 
Vi E I, ai =1= bi. 

By hypothesis, there is i E I, i 2: ib i 2: i2, such that Hi E JSL; 
hence ai E bi 0; bi - {b;} and Ui E ai 0i bi = {bi } U Ai. 

Case r. If Ui = bi , then ii = b. In the following, we suppose that 
U =1= b. 

Case 2°. If Ui E Ai, then Ui E bi 0i bi - {bi}, hence ii E bob. 

According to the above assumption, we have ii E bob - {b}. 
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Suppose it E a ° a. It follows 3j E I : Uj E aj OJ aj. There is 
k E I, k ~ i, k ~ j, such that Hk E JSL. We have Uk E ak ok ak, 
Uk E ak ok bk, whence Uk = bk or Uk E Ak. Since it =1= b, it follows 
Uk E Ak, so Uk fJ. ak ok ak, contradiction. Therefore, it fJ. a ° a. 

In a similar way, we can verify that a fJ. it ° it. 
Suppose now that 3y E H : a E yo Y - {y}, it E yo Y - {y} 

and y E bob - {b}. 
Since a E y ° Y it follows 3p E I : ap E Yp op YP and since a =1= y, 

it follows '\;;fi E I, ai =1= Yi. Similarly, we have 3r E I : Ur E Yr Or Yr, 
3£ E I : Yi E bioi bi , and '\;;fi E I, Ui f= Yi f= bi. 

Let S E I, S ~ p, S ~ r, S ~ £, S ~ i and such that Hs E JSL. 
We obtain 

3ys E Hs : as E Ys Os Ys - {Ys}, 

Us E Ys Os Ys - {Ys} and Ys E bs Os bs - {bs}. 

On the other hand, since Ui E ai 0i bi it follows Us E as Os bs and 
since Hs E JSL and it =1= b, it follows Us E As, whence one obtains 
that: j3ys E Hs : as E Ys Os Ys - {ys}, Us E Ys Os Ys - {ys} and 
Ys E bs Os bs - {bs}, contradiction. 

Therefore the last assumption is false, so 

lJy E H : a E yo Y - {y}, it Eli ° y - {y} and y E bob - {b}. 

Then, we can conclude that a ° b ~ {b} U A. Conversely, we have 
bE a ° b, since a E bob = bib. 

Let it E A. Then 3j E I : Uj E bj OJ bj and '\;;fi E I : Ui f= bi, 
Ui fJ. ai 0i ai, ai fJ. Ui 0i Ui· 

Moreover, since f-Jy E H : a E yo Y - {y}, it E yo Y - {y}, 
y E bob-{b}, it follows that '\;;fi E I, 7JYi E Hi such that ai E YiOiYi, 
Ui E Yi 0i Yi, Yi E bi OJ bi and ai -f Yi, Ui -f Yi, Yi -f bi. 

Since a E bob - {b}, that is3k E I : ak E bk Ok bk and 
'\;;fi E I, ai =1= bi and since it E A, it follows 3j E I : Uj E bj OJ bj , 
'\;;fi E I : Ui =1= bi, Ui fJ. ai 0i ai, ai fJ. Ui 0i Ui and '\;;fi E I, f-JYi E Hi! 
ai E Yi 0i Yi, Ui E Yi 0i Yi, Yi E bi 0i bi and a, -f Yi, Ui -f Yi, Yi -f bi· 

Let S E I, S ~ k, S ~ j and such that Hs E JSL. We have 
as E bs Os bs - {bs} and Us E {vs E Hs I Vs E bs Os bs - {bs}, 
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Vs tj. as Os as, as tj. Vs Os Vs, j3ys E Hs : as E Ys Os Ys - {Ys}, 
Vs E Ys Os Ys - {Ys}, Ys E bs Os bs - {bs}} = As, whence it follows 
Us E as Os bs, hence u E ii ° b. Therefore, a ° b = {b} U A and we can 
conclude that HE JSL. • 

57. Remark. 

10 In the lattice (H, V, !\) we have a ~ b -¢:::=?- ii E bob -¢:::=?- 3i E 1 : 
ai E bi 0i bi. If 3( i, j) E 12 , such that Hi E JSL, Hj E JSL and 
ai E bi 0i bi (that means ai ~ bi) and bj E aj OJ aj (that means 
bj ~ aj), then 3k E 1, k 2: i, k 2: j, such that Hk E JSL and 
ak ~ bk ~ ak, whence ak = bk, hence ii = b. 

20 For any (ii, b) E H2, sup(ii, b) = [(where [satisfies the condi­
tion 5» and inf(ii, b) = s (where s satisfies the condition 3)). 
(This follows by the proof of Theorem 53.) 

2. Inverse limit of an inverse family of join spaces 
associated with modular lattice 

First, let us recall the notion of inverse limit of an inverse family of 
join spaces. 

58. Definition. A family of join spaces {(Hi, 0i)}iEI is called an 
inverse family if: 

1) (1,~) is a directed partially ordered set; 

2) V(i,j) E /2, we have Hi n Hj = 0 -¢:::=?- i f= j; 

3) V(i,j)E/2,i~j, there is a homomorphism of join spaces 
Wij : Hi--+Hj, such that: if i2:j2:.k, Wjk ° Wij = Wik and Vi E 1, 
Wii is the identity mapping. 

Let (H = IT Hi, 0) be the direct product of the family 
iEI 

{(Hi,0i)}iEI and H = {x E H I Wij(Xi) = Xj, Vi 2: j}, where 
x = (Xi)iEI. 
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If H i- 0, then we define on H the hyperoperation: xoy = 
= xQ9ynH. 

If I has a maximum s, then H i- 0 and for each (x, y) E H2, 
xoy i- 0. Indeed, if Z E x Q9 y, then Zs E Xs Os Ys, whence Vi E I, 
'l/Jsi(Zs) E Xi 0i Yi, hence z = ('l/Jsi(Zs»iEI E Hand z E xoy. 

If Hi- 0, then (H,o) is called the inverse limit of the inverse 
family {(Hi, Q9i)}iEI· 

59. Theorem. Let {(Hi, 0i) hEI be an inverse family of join spaces, 
such that Vi E I, Hi E JSL. Moreover, let us supose that I has a 
maximum. Then (H,o) is a join space and moreover HE JSL. 

Proof. We shall verify the conditions of Theorem 53. 

1) V(x,y) EH2, x/y = {ZEH I XEyoz} = {ZEH I Vi EI: 
Xi E Yi 0i Zi} = {Z E H I Vi E: Zi E Xi/Yi = Xi 0i Yi} = x Q9 yn H = 
= xoy, whence x = (Xi)iEJ, Y = (Yi)iEI· 

2) Vx E H, x = (Xi)iEJ, we have 

xOxOx = U lOx = U {it E H I Vi E I : Ui E ti 0i Xi} = 

= {it E H I Vi E I : Ui E ti 0i Xi, ti E Xi 0i Xi} ~ 

~ {it E H I Vi E I : Ui E Xi 0i Xi 0i Xi = Xi 0i Xi} = 

= xQ9xnH =xox. 

Conversely, VX E H, x E xox, because Vi E I, Xi E Xi 0i Xi. 
So, xox C xoxox, hence we obtain the equality. 

3) For any a ::= lai)iEJ, b = (bi)iEI <!.f lj, we shall prove that 
there is z E aDa n bOb, such that aDa n bOb ~ zoz. 

Let s = maxi. Since Hs E JSL, there is 

Hence Vi E I we have 
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Therefore, 32' = C¢si(ZS))iEI E H, such that 2' E aDa n bOb. 
Let t E aDa n bOb. Then ts E as Os as n bs Os bs C Zs Os Zs, 

whenc~ Vi E I, ti E 'l/Jsi(Zs) 0i 'l/Jsi(Zs), so t E 2'02'. Therefore, 
aDa n bOb ~ 2'02'. 

4) For any x = (Xi)iE[, Y = (Yi)iEI we have {x, y} C xoy iff 
x=y. 

Indeed, if {x, y} C xoy, we have Vi E I, {Xi, Yi} C Xi 0i Yi, 
whence Xi = Yi, since Hi E JSL. Hence x = y. Conversely, we have 
VX E H, x E xox, because Vi E I, Xi E Xi 0i Xi, where x = (Xi)iEI. 

5) We shall prove now that Va = (ai)iEI E H, Vb = (bi)iEI E H, 
3x E H, 3t E H : {a,b} C xOx, n xOx = tOt and 

aOb = aot n bOt. {U;b)cXDx 

Indeed, if s = maxI, then 3xs E Hs : {as, bs} C Xs Os xs, 
3ts EI: n xsosxs=tsostsandasosbs=asostsnbsosts, 

{as,bs}Cxsosxs 

since Hs E JSL. It follows Vi E I, 

{'l/Jsi(as) = ai, 'l/Jsi(bs) = bi} C 'l/JSi(Xs) 0i 'l/Jsi(Xs), 

whence 3x = ('l/Jsi(Xs))iEI E H : {a, b} C xox. 
On the other hand, let t = ('l/Jsi(ts))iEI E H and v E tOt. It 

follows 

whence Vi E I, 

hence 15 E n xox. 
{U;b)cXDx 

Conversely, since {as, bs} C ts Os ts, it follows Vi E I, 
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so {a, b} c tOt. Therefore, n xOx = tOt. 
{Q.b}CxOx 

Finally, we have to verify the equality: 

aob = aOt n bOt. 
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We have u E aob iff Vi E I, Ui E ai 0i bi, that means Vi E I, 
Ui E ai 0i ti n bi 0i ti (since Vi E I, Hi E JSL), that is 

u E a®tnb®tnH = aOtnbOt. 

Therefore, aob = aot n bOt. 

- -=2 ---
6) Let (a, b) E H : a E bob - {b} and let us denote 

A = {u E H I u E bOb- {b},u ~ aOa,a ~ uou, 

:Efi E H : a E fiofi - {fi}, u E fiofi - {fi}, fi E bOb - {b}}. 

We shall verify that aOb = {b} U A. Since a E bOb - {b} it 
follows Vi E I, ai E bi 0i bi and 3io E I : aio=fbio · It follows as =f bs, 
since otherwise from as = bs one obtains Vi E I, ai = 'l/Jsi(as) = 
= 'l/Jsi(bs) = bi, which is false. So, as E bs Os bs - {bs} and since 
Hs E JSL it follows as Os bs = {bs} U As· 

Let u E aob, that is Vi E I, Ui E Ui 0i bi. Then Us E {bs} UAs. 

Case 1°. If Us = bs, then Vi E I, Ui = 'l/Jsi(Us ) = 'l/Jsi(bs) = bi, 
whence u = b. 

Case 2°. If Us E As, then we have Us E bs Os bs - {bs}, Us ~ as Os as, 
as ~ Us Os Us, 13ys E Hs : as E Ys Os Ys - {Ys}, Us E Ys Os Ys - {Ys} 
and Ys E bs Os bs - {bs}. 

It follows that Vi E I, Ui = 'l/Jsi(Us) E bi 0i bi and since u E H, 
we obtain u E bOb - {b}, because Us =f bs . 

Now, suppose that u E aDa, that is Vi E I, Ui E ai 0i ai, 
contradiction with Us ~ as Os as. So, u ¢ aDa and similarly we 
have a ~ uou. We suppose now that 3fi E H : a E fiofi - {y}, 
u E yoy - {Y} and y E bOb - {b}. So, Vi E I, {ai,ui} C Yi 0i Yi, 
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Yi E bi 0i bi and 3(it, i 2 , i3) E 13 , such that ail =1= YillUi2 = Yi2 and 
Yi3 = bi3 · 

From ail i- Yil we obtain as =1= Ys and similarly we have Us =1= 

i- Ys i- bs· Hence, 3ys E Hs : as E Ys Os Ys - {Ys}, Us E Ys Os Ys - {Ys} 
and Ys E bs Os bs - {bs}, which is false. Therefore, we can conclude 
that U E A. Then aOb ~ {b} U A. 

Conversely, we have b E aOb since a E bOb = bib. 
Let if E A. It follows that Vs E bs Os bs = {bs }, otherwise if 

Vs = bs, then Vi E I, Vi = 'l/Jsi(Vs) = 'l/Jsi(bs) = bi, whence if = b, 
which is false. 

Moreover, Vs ~ as Os as, otherwise we obtain Vi E I, 

Vi = 'l/Jsi(Vs) E 'l/Jsi(as) 0i 'l/Jsi(as) = ai 0i ai, 

whence if E aDa, which is false. Similarly, we have as ~ Vs OS VS' 
Furthermore, 13ys E Hs, such that as E Ys Os Ys - {Ys}, 

Us E Ys Os Ys - {Ys}, Ys E bs Os bs - {bs}. 
Indeed, if we suppose the contrary, it follows Vi E I, ai = 

= 'l/Jsi(as) E 'l/Jsi(YS) 0i 'l/Jsi(Ys) = Yi 0i Yi whence a E fJOfJ and on 
the other hand we have a =1= fJ· Similarly, Us E Ys Os Ys - {Ys}, 
Ys E bs Os bs - {bs} imply U E fJOfJ - {fJ}, fJ E bOb - {b}, so we 
obtain a contradiction. 

Therefore, if E A implies Vs E As. 
On the other hand, from a E bOb - {b} it follows as E bs Os 

bs - {bs}. Since Hs E JSL, we obtain: as Os bs = {bs} U As, whence 
Vs E asosbs. It results th~t Vi E I, Vi = 'l/Jsi(Vs) E 'l/Jsi(as) 0i 'l/Jsi(bs) = 
= ai 0i bi, hence if = aOb. 

Therefore aOb={b} U A and we can conclude that HE JSL. • 

60. Remark. 

1°) In the lattice (H, V, A) we have: a ~ b -¢:=? a E bOb -¢:=? 

Vi E I, ai E bi 0i bi -¢:=? Vi E I, ai ~ bi, where a = (ai)iEI and 
b = (bi)iEl' 

For any (a, b) E H2, sup(a, b) = t, which satisfies the con­
dition 5) and inf(a, b) = Z, which satisfies the condition 3). 
(This follows by the proof of Theorem 53.) 
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§5. Hyperlattices and join spaces 

The hyperlattices have been introduced by M. Konstantinidou and 
J. Mittas. In the following, a connection between hyperlattices and 
join spaces is established. 

61. Definition. Let H be a set, V a hyperoperation on Hand 1\ 

an operation. We say that (H, V, 1\) is a hyperlattice if the following 
conditions are satisfied, for all (a, b, c) E H3 : 

1. a E a V a and a 1\ a = aj 

2. a V b = b Va and a 1\ b = b 1\ aj 

3. (a V b) V c = a V (b V c) and (a 1\ b) 1\ c = a 1\ (b 1\ c)j 

4. aE [aV(al\b)] 1\ [a 1\ (a V b)]j 
5. a E a Vb===} b = a 1\ b. 

J) Let X and Z be sets and s : X --t P*(Z) a function. 
A.R. Ashrafi [10] defined on X the following hyperoperation: 

V(a,b) E X 2 , a%.b = {x E X I sex) ~ sea) U s(b)}. 

We present here some of Ashrafi's results about this subject: 

62. Proposition. If seX) is a V-subsemilattice of P*(Z) then 
(X, *) is a commutative hyper group. 

Proof. Let y E (a %. b) %. c. Then there exists x E X such that 
sex) ~ s(a)Us(b) and s(y) ~ s(x)Us(c). Therefore, s(y) ~ (s(a)U 
Us(b)) U s(c) = sea) U(s(b) Us(c)). Since seX) is a V-subsemilattice 
of P*(Z), there exists t E X such that s(b) U s(c) = set) and so 
s(y) ~ s(a)Us(t). Thus, YEa%. (b%.c), that is (a*b) *c ~ a* (b*c). 
Similarly, we have a * (b * c) ~ (a * b) * c. Therefore, the associative 
law holds. • 

63. Corollary. If seX) is a V-subsemilattice, then we have 



152 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Proof. Let U = al*a2*'" *an and V = {x E X I s(x) <;;:; 

<;;:; s(al) u··· U s(an)}. We must prove U = V. We have U <;;:; V. 
Now, let y E V. Then s(y) <;;:; s(al) U ... U s(an). Since s(X) is 
a V-subsemilattice of P*(Z), hence there exists an element x E X 
such that s(x) = s(al) U ... U s(an-l)' By induction, we have 

s s s s 
x E al * a2 * ... * an-l and y E x * an. Therefore, y E U and so 
V <;;:; U, hence U = v. • 

64. Proposition. If s(X) is a partition of Z then (X, *) is a 
commutative hypergroup. 

Proof. It is enough to verify the associative law. Let (a, b, c) E X3, 

{x E X I s(x) <;;:; s(a) U s(b)} *c 
U x*c 

s(x)~s(a)Us(b) 

Denote T = {x E X I s(x) <;;:; s(a) U s(b) U s(c)}. Now we check 
( s)s. (s s thatT= a*b *c. It lseasy to see that a*b)*c<;;:;T. LetYET. 

Then s(y) <;;:; s(a) Us(b) U s(c) and so s(y) = (s(y) n s(a» U (s(y) n 
ns(b) U (s(y) n s(c». Since {s(x) I x E X} is a partition of Z, we 
shall consider the following cases: 

Case 1) s(y) = s(a) or [s(y) # s(a) and s(y) = s(b)J. In this case 
we choose x = y and we have, 

Y E x * c and s(x) = s(y) <;;:; s(a) U s(b). 

Therefore, y E (a * b) * c. 

Case 2) s(y) # s(a), s(y) # s(b) and s(y) = s(c). In this case we 
choose x = a and we have, 

Y E x*c and s(x) = s(a) <;;:; s(a) U s(b). 
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s ) s Thus, y E (a * b * c. 
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Case 3) s(y)=/=s(a) , s(y)=/=s(b) and s(y)=/=s(c). It follows s(y)=0, 
which is absurd. Similarly, T = a * (b * c) and so (a * b) * c 
=a*(b*c). _ 

65. Corollary. If seX) is a partition of Z, then we have 

Proof. Let al* ... * an-l = {x I sex) ~ s(al)U···s(an-I)}. Then 
we have, 

al* ... *an {x I sex) ~ s(al)U···s(an_I)}*an 
= U x*an 

sex )~s(al)U···Us(an_l) 

U {x E X I sex) ~ s(g) U sean)} 
s(x)~s(al )u···Us(an_l) 

Denote 

s s ) T = al * ... * an and S = {x E X I sex ~ sCad u··· U sean)}. 

It is obvious that T ~ S, so it is enough to verify that S ~ T. 
Suppose XES, then sex) ~ seal) U··· U sean), and we have 

sex) = sex) n (s(al) U··· U sean»~ 
= [sex) n (s(al) U··· U s(an-l)] U [sex) n sean)] 

If sex) = sean) then we choose x = al and we have sex) ~ sCad U 
... U s(an-l), so sex) ~ sex) U sex) ~ seal) U ... U sean). Now, 
we assume that sex) n sean) = 0, therefore sex) = sex) n (s(al) U 
... U s(an-l». Choose x = x. We have sex) ~ sex) U sean), so 
sex) = sex) ~ seal) U··· U sean-d. Hence T = S. _ 

66. Proposition. Let seX) be a V-subsemilattice of P*(Z). If 
(X, *) is a join space, then sea) ns(b) =/= 0, for all (a, b) E X2. 
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Proof. Suppose there is (a, b) E X 2 , such that s(a) n s(b) = 0. 
By hypothesis, there exists t E X such that s(t) = s(a) U s(b). We 

have t E alb n bla, but a * an b * b = 0. Therefore, (X, *) is not a 
join space, which is a contradiction. _ 

67. Lemma. If s(X) is a sublattice of P*(Z), then (X, *) is a 
join space. 

Proof. By Proposition 62, (X, *) is a commutative hypergroup. 
Now we suppose that (a, b, c, d) E X4. Set s(a) U s(d) = s(u), 
s(b)Us(c) = s(v) and s(u) ns(v) = s(w). It follows wE a * dnb* c. 
Hence (X, * ) is a join space. _ 

68. Proposition. If s(X) is a partition of Z then (X, * ) is a join 
space. 

Proof. Suppose s(X) is a partition of Z and (a, b, c, d) E X4, 

such that alb n cld of:. 0. If s(a) = s(b), then a E a * d n b* c and 
if s(c) = s(d), then c E a * d n b * c. Therefore, we can assume 
s(a) of:. s(b) and s(c) of:. s(d). Now, since s(X) is a partition of Z, 
it follows alb = s-l(s(a» and cld = S-l(S(c». By assumption, 
we have s-l(s(a» n S-l(S(C» of:. 0 and so s(a) = s(c), that is, 

a E a * d n b * c. Therefore, (X, * ) is a join space. _ 

In the following, we shall consider the set of all subhypergroups 
of the hypergroup (X, * ) and define a hyperlattice structure on this 
set. 

Let (X, * ) be a hypergroup and £(X) the set of all sub--hyper­
groups of X. 

Let X A = {g E X I s(g) ~ A}. If A E P*(Z) then we suppose 
X A of:. 0. 
69. Proposition. Let Z be a finite set and s : X ---t P*(Z) be a 
function such that (X, *) is a hypergroup. Also, we assume that 
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and H is a subhypergroup of X. Then there exists a set T such that 
H=XT . 

Proof. Let H be a subhypergroup of X and T = U s(b). We claim 
bEH 

that H = X T. Indeed, suppose x E H. Then s(x) ~ U s(b) = T 
bEH 

and so x EXT, that is, H ~ X T. Now we assume that x EXT. 
Then s(x) ~ T = U s(b). We choose the elements bl, b2,"', br of 

bEH 

H such that s(x) ~ s(b1 ) u··· U s(br ). We have 

and H is a subhypergroup of X, hence xEH. Therefore, H=XT .• 

We have X AnB = X A nxB , for all A, B E P*(Z). On the other 
hand, we have X AUB = X A U X B. Let us consider the following 
example. 

70. Example. Let X = P(Z) and s be the identity function on 
P*(Z) with s(0) = Z, jZj 2: 3 and let a, b, c be distinct elements of 
Z. Set R = {a,b} and S = {c}. Then X R = P*(R),Xs = P*(S) 
and X RUS = P*(R US). We have X RUS =J X R U Xs. • 

By Corollary 63, Corollary 65 and Proposition 69, if s(X) is 
a V-subsemilattice or if it is a partition of Z, then £(X)={XT j 
T E P* (Z) and X T=J0}. In this case, we define a hyperoperation V 
and an operation 1\ on £(X) such that (£(X), V,I\) is a hyperlat­
tice. We assume that 

In the following lemmas we investigate the conditions of a hy­
perlattice. 

71. Lemma. X A E X A V XA,XA I\XA = X A, X A V X B = X B V X A 
and X A 1\ X B = X AAB = X B 1\ X A. 

Proof. Immediate. • 
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72. Lemma. (XA V XB)V Xc = X A V(XB V Xc) and (XAAXB)A 
AXc = X A A (XB A Xc). 

Proof. The associativity of A is immediate. We verify the associa­
tivity of V. Let A, B, C E P*(Z). Then 

{XT I AU B ~ T} V Xc = 
U XTVXC= 

AUB~T 

U {Xu IT U C ~ U} = 
AUB~T 

{X v I A U B U C :::; V} 

Similarly, we have X A V (XB V Xc) = {Xu I AU B U C ~ U}, hence 
also V is associative. _ 

73. Lemma. X A E [XA V (XA A X B)} n [(XA A (XA V X B)}, for all 
A,B E P*(Z). 

Proof. Let A and B be arbitrary elements of P*(Z). Then we 
have, 

X A V XAAB = 
{XT I A U (A A B) ~ T} = 
{XT I A ~ T} 

Therefore, X A E X A V (XA A XB)' On the other hand, X A = 
= XAA(AVB) = XA A X AUB E XA A (XA V X B), as required. _ 

Proof. Let X A E X A V X B. Then there exists T E P* (Z) such 
that X A = X T and A U B ~ T. Thus, B = B n T and so X B = 
= X BnT = X B A XT = XA A X B. Therefore, X B = X A A X B and 
the lemma is proved. _ 

We summarize the above lemmas in the following theorem: 
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75. Theorem. Let s : X ---+ P*(Z) be a function such that (X, *) 
is a hypergroup. Also, we assume that for all positive integer nand 
the elements aI, ... ,an of X, we have 

Then (.c(X), V,!\) is a hyperlattice. 

We now investigate the distributivity of .c(X) and show that 
this hyperlattice is not distributive, in general. In fact, we can 
consider the following example. 

76. Example. There exists a function s : X ---+ P*(Z) such that 
(X, *) is a hypergroup which satisfies the conditions of Theorem 75, 
but .c(X) is not distributive. Indeed, let us assume that H is a finite 
group, lle(H) = {ord(x) I x E H} and s : P(H) ---+ P*(lle(H» 
defined by seA) = {ord(x) I x E A} and s(0) = TIe(H). It is easy 
to see that the function s is onto, so by Theorem 75 .c(P*(H» 
is a hyperlattice. Suppose, H = Z4 = {e, a, a2, a3 }, the cyclic 
group of order four, and X = P*(H). Then lle(Z4) = {I, 2, 4}. 
Set, A = {I, 2}, B = {I}, C = {2,4} and D = {2}. It is clear that 
XA!\(XBVXc ) = XA!\Xne(x) = XA and (XA!\XB) V(XA !\Xc ) = 
= X B V X D = {XA,Xne(x)}. This shows that X A !\ (XB V Xc) l­
I- (XA !\ X B) V (XA !\ Xc)· Therefore, .c(P(Z4» is a hyperlattice 
which is not distributive. • 

II) We present here some results on a special type of hyperlat­
tices, called P-hyperlattices, introduced and studied by M. Kon­
stantinidou. 

Let us recall what a hyperlattice is. 

77. Definition. Let HI-0 and V:HxH~P*(H), !\:HxH~H be 
such that \;j (a, b, c) E H3, we have: 

(i) a E a Va, a = a !\ a; 

(ii) a V b = b V a, a!\ b = b !\ a; 
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(iii) (aVb)Vc=aV(bVc), (aVb)Ac=aA(bVc); 

(iv) a E [a A (a V b)J n [a V (a A b)]; 
(v) b:S a ~ a E a V b. 

Then the hyperstructure (H, V, A) is called hyperlattice. 

Notice that in a hyperlattice (H, V, A) the following properties 
hold, and they can be proved easily: 

1) V(a,b) E H2, a V b ~ a V (a V b) (if H is a lattice, we have 
the equality, whence a ::S a Vb). 

2) if a :S b are elements of H and x is arbitrary in H, then 
b V x ~ (a V x) V (b V x) (if H is a lattice, we have the equality, 
whence a :S b ===> a V x ::S b V x). 

3) if a :S c and b::S d are elements of H, then c V d ~ (a V b) V 
(c V d) (if H is a lattice, then we have the equality, whence (a ::S c 
and b ::S d) ===> a V b :S c V d). 

4) if (a, b, c, d) E H4, then aV b ~ (aVb) V (aAc) V (bAd) (if His 
a lattice, then we have the equality, whence (aAc) V (bAd) ::S a V b). 

5) V(a,b) E H2, we have aAb E (aAb)V (a Vb) (if H is a 
lattice, then we have the equality, whence a A b ::S a V b). 

Let (L, V, A) be a lattice and P ~ L, P =1= 0. We define the 
following hyperoperation on L: 

p 

V(a,b)EL2, aVb=aVbVP={aVbVqlqEP}. 

p 
78. Remark. Let a E L. We have a E aVa if and only if 3q E P 
such that q :S a. 

p 
Proof. "~" Let q E P such that q ::S a. Then aVa = a V P :3 

:3 a Vq=a. 
p 

"===>" If a E aVa = a V P, then there is q E P such that 
a = a V q, whence q :S a. _ 
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Notation. Let I L be the set 

{P~LI'IxEL, 3qEP:q:s;x}. 

p 

79~' Theorem. The hyperstructure (L, V, /\) is a hyperlattice if 
and only if P E IL. 

Proof. "¢=" Let P E IL. For any (a, b,c) E L3, we have: 

p 
(i) a E aVa (by the previous remark); 

p p 
(ii) aVa = bVa = a V b V P; .. 

p p p p 

(iii) (aVb)Vc = aV(bVc) = {a V b V c V q V r I (q,r) E p2} = 
= a V b V c V P V P; 

(iv) Let a ELand q E P be such that q :s; a. We have 
p 

a = a/\(aVb) = a/\(aVbVq)Ea/\(aVbV P) = a/\(aVb) and 
p 

a = a V (a /\ b) = a V (a /\ b) V q E a V (a /\ b) V P = aV(a /\ b). 

p 

(v) If b ~ a, then a = aVq E aV P = aVbV P = aVb. Conversely, 
p 

if a E aVb = a V b V P then 3t E P such that a = a V b V t, 
that is b :s; a. 

p 
Therefore, (L, V, /\) is a hyperlattice. 

p 
"~" Let (L, V, /\) be a hyperlattice. Then 'I a E L, we have 

p 

a E aVa, therefore P E I L , according to the previous remark. _ 

p 
80. Corollary. (L, V,/\) is a hyperlattice if and only if'la E L, 

p 

a E aVa. 

81. Proposition. Let.:J be an ideal of a lattice L. Then.:J E IL. 
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Proof. Since.1 is an ideal of L, it follows that L/\3 ~ 3, whence 
V(a,q) E Lx .1, 3q E J such that a /\ q = q, so q ::; a. Hence 
3 E fL. • 

82. Remark. The converse of the previous proposition is not 
true. Indeed, if L = {o, a, b} and 0 ::; a ::; b, then .1 = {o, b} E fL 

because 0 E .1, but 3 is not an ideal of L. 

p 
83. Definition. The hyperlattice (L, V, /\) is called P-hyperlattice. 

p 

84. Remark. V(a,b) E L2 we have a V b E aVb, so if a P-
hyperlattice degenerates into a lattice, this coincides with the sup­
porting lattice. 

85. Remark. There are hyperlattices, where there does not exist 
the supremum for all pairs of their elements. Indeed, let H = 
= {a,b,c,d,x,y,z}, where a < b < d < x < y < z, a < e < d and 
bile. 

H we consider the following hyperlattice on H : V (a, (3) E H2, 
a ::; f3, we have a V f3 = b E H I f3 ::; ,} and b V e = H - {a, b, e}. 
Then the sup(b, c) does not exist. Hyperlattices of this kind cannot 
be P-hyperlattices. 



Chapter 5 

Fuzzy sets and rough sets 

Fuzzy Sets and Hyperstructures introduced by Zadeh, in 
1965, and by Marty, in 1934, respectively, are now used in 
the world both on the theoretical point of view and for their 
many applications. The Rough Sets considered for the first 
time by Shafer in 1976, have been reintroduced in the inter­
national scientific circle by Pawlak, in 1991 especially in con­
nection with Artificial Intelligence. The relations between 
Rough Sets and Fuzzy Sets have been already considered by 
Dubois and Prade [137], those between Fuzzy Sets and Hy­
perstructures by Corsini, Corsini-Leoreanu, Corsini-Tofan, 
Ameri-Zahedi and others, those between Rough Sets and 
Hyperstructures by Davvaz. More recently, M. Konstan­
tinidou and A. Kehagias have obtained interesting results 
on hyperstructures and fuzzy subsets. 

§ 1. Join spaces associated 
with fuzzy subsets 

The first connection between fuzzy subsets and join spaces has been 
established by P. Corsini. Afterwards, P. Corsini and V. Leoreanu 
have obtained more results concerning this connection. We present 
some of Corsini and Leoreanu results here. 

161 
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Let J.l : H --t I be a function from a nonempty set H to the 
closed interval I = [0,1] that is < H; J.l > is a fuzzy subset. Let 
us define on H the hyperoperation: for all (x, y) E H2 such that 
J.l{x) ~ !ley), 

yox = xoy = {x E H I J.l(x) ~ J.l(z) ~ J.l(y)} 

1. Theorem. The hypergroupoid < H; 0> is a join space. 

Proof. It is clear that 0 is associative and reproducible, that is 
< H; 0> is a (clearly commutative) hypergroup. It remains to prove 
that <H; 0 > satisfies the condition a/bne/d -/:- 0 ==? aodnboe -/:- 0. 
Let us suppose x E alb n c/d, that is 

We distinguish four cases: 

1. J.l(x) ~ J.l{b), J.l{x) ~ J.l{d). 
Then we have: J.l{x) ~ J.l{a) ~ J.l{b) , J.l(d) ~ J.l{c) ~ J.l{x) , 
from which: J.l{d) ~ J.l(e) ~ /-lex) ~ J.l{a) ~ J.l{b) , whence 
[J.l{c) , J.l(x)]C[J.l{a), J.l{d)]n[J.l{e), J.l{b)]' therefore aodnboe-/:-0. 

2. J.l{x) ~ J.l(b) , J.l{x) ~ J.l{d). 
Then we have: J.l{b) ~ /-lea) ~ J.l(x) , J.l(x) ~ J.l(e) ~ J.l(d), 
whence J.l(b) ~ J.l(a) ~ J.l{x) ~ J.l(e) ~ J.l(d), from which 
[/-l(a) , J.l(x)]C[J.l(b), J.l(e)]n[J.l{a), J.l(d)]' therefore aodnboe-/:-0. 

3. J.l(x) < J.l(b),J.l(d) ~ J.l{x). Then J.l{a) ~ J.l(b), J.l(e) ~ J.l{d). 
We can distinguish two cases: 

(i) J.l(b) ~ J.l(d); 
we have: J.l(a) ~ /-l(b) ~ J.l(d), therefore aod n boe -/:- 0. 

(ii) J.l(b) ~ J.l(d); 
then we have: J.l(e) ~ J.l(d) ~ J.l(b), whence boenaod -/:- 0. 

4. J.l(x) ~ J.l(b), J.l(x) ~ J.l(d). 
From which J.l(b) ~ J.l(a) , /-led) ~ J.l(e). 
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We can distinguish two cases: 

(i) J1,(a) ::; J1,(c); then J1,(b) ::; J1,(a) ::; J1,(c), 
therefore boc n aod f= 0. 

(ii) J1,(a) 2: J1,(c); then J1,(d) ::; J1,(c) ::; J1,(a), 
therefore aod n boc f= 0. 

2. Theorem. 
1) WehaveVnElN*, V(Zl,Z2, ... ,zn)EHn 

g Zi = {u IlJ J1,(Zi) ::; J1,(u) ::; ;~ J1,(Zi)} . 

Moreover, if R is the equivalence relation defined on H: 

xRy ~ J1,(x) = J1,(y), 

we have 

2) R c (32; 

3) H / R is a hypergroup with respect to the hyperoperation 
x 0 y = {z I Z E xoy}. 

163 

• 

Proof. 1) It follows inductively from the definition. Indeed we 
have 

n n-l 

II Z; = II ZiOZn = U VOZn = 
i=l ;=1 n-l 

vE TIZi 
i=l 

n-l 

vE I1Zi 
i=l 

Let us suppose by induction 
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Then we obtain 

u 
i=l n-l n-l 

AP,(Zi)'S.P,(V)'S. V P,(Zi) 
i=l n-l 

2) Since < H; ° > is a join space, it is a hypergroup, whence 
V (a, b) E H2, there is q E H such that a E boq. So, if aRa', it 
follows a' E f-L-lf-L(a) C boq then R(a) C boq and therefore R C (32. 

3) R is regular. Indeed, aRa', bRb' implies aob = a'ob'. Then 
by Theorem 29 [437J, < H / R; (5 > is a hypergroup. _ 

In the following, we shall give a necessary and sufficient condi­
tion for the isomorphism of two join spaces, associated with fuzzy 
subsets, on the same universe. 

We shall find the number of isomorphism classes of such join 
spaces, in the case of a finite universe. 

To different fuzzy subsets f-LA, f-LB, isomorphic join spaces can 
correspond, for instance, if f-LA is the complement of f-LA, then 
< H; 0A > and < H; 0A > are isomorphic. 

First, we shall find the number of isomorphism classes of join 
spaces associated with fuzzy subsets on a universe H such that 
IHI = n < ~o· 

Let us set H = len) = {I, 2, ... , n}, let P be the set of fuzzy 
subsets on H and let f-LA E P(H). 

Let us define on H the equivalence relation 

urv A v if and only if f-L A ( u) = f-L A ( V ) . 

Let us set H' = H / rv A, IH'I = s, and let us order H' such that 

II) V(h,k) E H2, h < k if and only if f-LA(h) < f-LA(k). 
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Let H' = {hI, h2' ... , hs} and let A(J.lA) be the ordered partition of 
n into s parts defined as follows: 

III) \:I (ht, ... , hs) E H's, A(J.lA) = (at, a2, ... , as) if and only if \:I i, 
ai = /J.lA:I(J.lA (hi) / and \:I (i, j) E I( s) x I( s) such that i =I j, 

i < j ~ hi < hj' 

s 

Clearly, we have I)i = n, and \:I i, ai 2 l. 
i=l 

IV) Let (at, a2, ... , as) be an ordered partition of n into s parts. 
Let us set w(al' a2, ... , as) = (bt, ... , bs) where \:I i : 1 ~ i ~ s, 
bi = as-HI· 

We shall prove the following 

3. Theorem. If J.lA, J.lB are fuzzy subsets on a finite universe H, 
then the join spaces < H; 0 A > and < H; 0 B > are isomorphic if 
and only if either A(J.lA) = A(J.lB) or A(J.lB) = W('\(J.lA»· 

Proof. We shall prove before the implication "~" . 
Let us suppose A(J.lA) = A(J.lB) = (aI, ... ,as)· We can set 

s s 

H = UH = UHj, where \:Ij E I(s), Hj = J.lA:1(J.lA(hj» and 
j=l j=l 

Hj = J.lI/(J.lB(hj». 
Let Hj = {Xl,j,X2,j, ... ,xaj,j}, Hj = {X~,j,X2,j, ""X~j,j}' 
Let us order H in the following manner 

\:I (j,j') E I(s) x I(s), \:I(h',h') E I(aj) x I(aj) 

Xh,j < Xh',j ~ h < h'. 

If j =I j', \:I (h, h'), 

. ., 
Xh,j < Xh',j' ~ J < J . 

Moreover, \:I(i,j) E I(s)xI(s) we shall denote i V j = max{i,j}, 
i/\j = min{i,j}. Then \:I (i,j) E I(s)xI(s), \:I(h,k) E I(ai)xI(aj), 
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by I) we have 

Xh,i ° A Xk,j = U Hr, 
iflj5,r5,iVj 

Xh,i 0B Xk,j = U H;. 
iflj5,r5,iVj 

Therefore, if f : < H; ° A > --t < H; ° B > is the function defined 
as follows: V(u,t) E 1(at)x1(8), f(xu,t) = X~,t; then we have 

f(Xh,i 0A Xk,j) = X~,i 0B X~,j = f(Xh,i) 0B f(Xk,j), 

where < H; ° A > and < H' ° B > are isomorphic hypergroups. 
Let us suppose now >'(/-LB) = W(>'(/-LA». 
Let us set H = U H j where V j E 1(8), H j = {XI,j, ... , Xaj,j}, 

15,j5,s 

and Hi = U Hi" where j' = W(j) = s - j + 1, and Hi, = 
15,j'5,s 

= {x~ j" ... , x~, j'} with alj' = aj. 
I j/ 

Let us define V(h,j) E 1(aj)x1(s), f(Xh,j) = X~,j'. We have 

f(Xh,iOAXk,j)=f( U Hr)= U H~(r)= 
iflj5,r5,iVj w( iVj)5,w(r)5,w(iflj) 

U H; = X~,i' 0B Xk,j' = f(Xh,i) 0B f(Xk,j), 
i' flj'5,r'5,i'Vj' 

whence f is an isomorphism. 

Let us prove now the implication" ==?" . 

Let p : H --t 1(s) be the function defined as follows: V x E H, 
p(x) = j where j is that unique element of 1(s), such that 3k E 
E 1 (aj) so that x = Xkj E H j . Analogously we define p' : H --t 1 (S') 
where s' = IH/"'BI. 

Let f : < H : ° A > ---t < H; ° B > be the isomorphism of these 
two join spaces. Then V (x, y) E H2, we have 

f(XOAY)=f( U H j) U f(Hj). 
p(x )flp(y )5,j5,p(x )Vp(y) p(x )flp(y )5,j 5,p(x )Vp(y) 
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f(x 0A y) = f(x) °B fey) = U H;. 
r/ (J(x) )I\p' (J (y) ):S:r:S:r/ (J( x) )Vr/ (J(y» 

For V(u,v) E NxN, we shall denote l(u,v) the set 

{zENluAv~z~uVv}. 

Let us remark now 

1) rt =I r2 =? H;l n H;2 = 0, 
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2) if {x,y} c H, we have XOAY = H = XOAX = YOAY, 

whence f(x) 0B fey) = f(x 0A y) = f(x 0A x) = f(Hj) = 
= f(x) 0B f(x), 

3) by 1) and 2), there is only one t = p'(f(x)) such that f(Hj) = 
= f(x) 0B fey) = H:' 

We shall set t = cp(j), whence f(Hj) = H~(j)' 
So we have cp : l(p(x),p(y)) -t l(p'(f(x)),p'(f(y))) and we 

have clearly V x E H, cp(p(x)) = p'(f(x)). 
We shall prove that cp is a bijection. 
cp is clearly an one-to-one function. 
Indeed, if there were jt, j2 such that jt =I j2 and cp(jt) = CP(j2), 

it follows f(Hj}) = f(Hjz) from which V k : k E l(ajJ, h E l(ajz) 
exists such that f(Xk,jJ=f(Xk,jz) which is absurd since Hj1 nHjz=0, 
and f is one-to-one function. 

cp is also onto. 
Indeed, since 

f(Xk,i 0A Xh,j) = f(Xk,i) 0B f(Xh,j) = U H; 
rEI(p' (J(Xk,i) )r/(J(Xh,j») 

and P'(f(Xk,i)) = cp(i), P'(f(Xh,j)) = cp(j). 
We have that VrEl(cp(i), cp(j)), 3tEl(i,j) such that cp(t)=r. 
Therefore, cp is a bijection from the interval I (i, j) to the in­

terval (I(cp(i),cp(j)). Particularly cp : l(l,s) -t (I(cp(l),cp(s)). On 
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the other hand, as f is a bijection, it follows Vy E H, 3!(k,j) E 
E I(aj)x/(s) such that f(Xk,j) = y, whence 

f(H) = H = U f(Hj ) = U H~(j) = U H;. 
JEI(s) JEI(s) rEI('P(l),'P(S» 

Moreover, clearly cp is a function from 1 (s) to 1 (Sf) and since 
Sf = IH/"-'BI and f is an isomorphism, we have 

If(H)/"-'BI = IH/"-'BI = Ip'(H)1 = Ip'(f(H») I = Icp(p{H))1, 

whence s' = IH/"-'BI = Icp(p{H))1 = Ip{H)1 = s. 
Moreover, V j E I{s), we have 

On the other side ,V k E I{al), V hE I{as), we have 

f{H) = f{Xk,l 0AXh,s) = U H: = H. 
tEI(l,s) 

Therefore, the interval l{cp{I), cp{s)) coincides with the inter­
val 1(I,s)=/{s). It follows {cp{I),cp{s)n={I,s}. Hence 1(2,s-I)= 
= 1(I,s)-{I,s} = l{cp(I),cp(s)) - {cp(I),cp(sn = cp(I(s)) -
-{cp(I), cp{s)} = cp(I{2, s-l)) = l{cp(2),cp(s-I») from 1(2, s-l) = 
= l(cp(2), cp(s - 1)). 

One obtains analogously {cp(2), cp(s -In = {2, s - I}. 
In general, we have 

(c) Vk, cp(k) E {k,s-k+l}. 

Let V be the set of the permutations of I(s,) which satisfy (c). 

"l) We shall prove now that either cp is the identity function lof 
1 (s) or it is the permutation 'II of 1 (s) defined: 

VkEl(s), w{k)=s-k+l. 
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If s ::; 3 we have V = {h(s) , W}. If s > 3 and one supposes cp(l) = 1, 
cp(2) = W(2) = s - 2 + 1 = s - 1, it follows cp(I(1,2)) = 
= l(cp(I),cp(2» = 1(I,s-I), whence 2 = 1(1(1,2)1 = Icp(I(1,2»I:/= 
:/= 11(1, s - 1)1 2: 3, absurd. 

Analogously if cp(l) = s, then cp(2) = 2. 
Therefore, either CPI(2) = h(2) or CPI(2) = W 1(2)· 
Let k be in I (s) and let us suppose 

CPI(k) = h(k), cp(k + 1) = w(k + 1). 

Then we have k+ 1 = 11(k + 1)1 = Icp(I(k + 1»1 = 11(cp(I), cp(k»I+ 
+Il(cp(k), w(k + 1»1 - 1 = k + 11(k, s - k)1 - 1 = k + s - 2k, 
from which s = 2k + 1, hence cp(k + 1) = s - (k + 1) + 1 = 
= 2k + 1 - k - 1 + 1 = k + 1, from which CPI(k+1) = h(k+l). 

Analogously, if one supposes 

CPI(k) = WICk), cp(k + 1) = k + 1, 

then we have k+l = Icp(l(k + 1»1 = Icp(lk) I + Icp(I(k, s - k»I-l = 
= k + s - sk + 1 - 1 whence s - 2k = 1 that is s = 2k + 1. Then 
w(k + 1) = s - (k + 1) + 1 = 2k + 1- k - 1 + 1 = k + 1 = l(k + 1) 
from which CPI(k+1) = WI(k+1). 

Therefore, by induction, "') is proved, hence the implication 
==> follows and consequently the theorem is proved. _ 

4. Theorem. Let H be l(n) and let J/J(n) be the set of isomor­
phism classes of the join spaces < H; 0A > associated with the fuzzy 
subsets J.LA on the universe H. Then 

if n = 2k + 1, 1J/J(n)1 = 2k-l(2k + 1) 

if n = 2k, 1J/J(n)1 = 2k- 1(2k- 1 + 1). 

To calculate IJ/J(n)I by Theorem 3, it is enough to remember 
that if (p.o.) (n) is the set of the ordered partitions of n, we have 
1(p.o.)1 = 2n - 1 (see [448]), and to find those p E (p.o.)(n) such that 
w(p) = p. 
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An ordered partition (aI, az, ... , as) of the integer n is called 
symmetrical if \[!(al, ... , as) = (a}, ... , as). Let us denote (s.o.p.)(n), 
the set of the symmetrical ordered partitions of n. To calculate the 
number l(s.o.p.)(n)l, we shall distinguish the case n is odd from 
that it is even. 

Let us suppose n = 2k + 1, and X E (s.o.p.)(n). Then either 
X = (2k + 1) or it is of the type (iI, iz, ... , is, 2t + 1, is, is-I, ... , i l ) 

where t E {O, 1, ... , k - I}, s E {k - t, k - t - 1, ... , I}, and we have 
s s 

22)r + 2t + 1 = 2k + 1, whence 2)r = k - t. 
r=l r=l 

For any t, we have I(s.o.p.)(k - t)1 = 2k- t - 1 (see [448]). 
k-l 

It follows l(s.o.p.)(n)1 = L2k- t - 1 + l. 
t=O 

Let us set k - t - 1 = v, then 
k-l 0 

L2k- t - 1 = L 2v = 2(k-I)+1 - 1 
t=O v=k-l 

from which l(s.o.p.)(2k + 1)1 = 2k. 
Let us suppose now n=2k. Then if X E (s.o.p.)(n), either 

X E (2k) or it is of the type: (iI, ... , is, 2t, is, ... , il)' where 
s 

t E {O, 1, ... , k - I}, S E {k - t, k - t - 1, ... , I} and Lij = k - t. We 
j=l 

have I(s.o.p.)(k - t)1 = 2k- t -t, from which 

k-l 

l(s.o.p.)(2k)1 = L2k- t - 1 + 1 = 2k. 

Now we can conclude. 
If n = 2k + 1, then 

t=O 

IJtt(n)1 = 2k + (2n - 1 _ 2k)~ = 2k + 2Zk- 1 _ 2k- 1 = 2k- I(2k - 1) 2 . 

If n = 2k, then 

IJtt(n)1 = 2k + (2k- 1 - 2k)~ = 2k- I(2 + 2k - 1 - 1) = 2k- I(2k- 1 + 1) . 

• 
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Now, it is interesting to study how the isomorphism problem 
of two join spaces associated with fuzzy subsets on a finite universe, 
can be generalized for the case of an arbitrary universe. 

Before see it, let us make some notations. 
Let /LA be a fuzzy subset on an arbitrary universe H and let 

us define the equivalence relation 

Now, if /LA and /LB are two fuzzy subsets on H, let us set 
H/"-'A = {Hi liE I} and H/"-'B = {H:, Ii' E I'}, where 

and 

We order I (1', respectively) such that: i < j ¢=:> (\I (x, y) E 

E HiXHj, /LA(X) < /LA(Y» (i' < j' ¢=:> (\I(x',y') E H{,xH'j" 
/LB(X') < /LB(Y'», respectively) and we order also H/"-'A (H/"-'B) 
such that: Hi < Hj ¢=:> i < j (H:, < Hj, ¢=:> i' < j', respectively). 

We have the following 

5. Theorem. If /LA, /LB are fuzzy subsets on a universe H, then 
the join spaces < H; ° A > and < H; ° B > are isomorphic if and 
only if a strict monotone and bijective function <p : I ~ l' exists, 
such that \I i E I, ai = a~(i). 
Proof. First, let us prove the implication" ==}" . 

We denote by f the isomorphism between (H,OA) and (H,OB). 
Similarly, with the finite case, we shall consider p : H ~ I, 

p(x) = j, (p' : H ~ 1', p'(x) = j'), where j (j', respectively) is the 
unique element of I (I', respectively) such that x E H j (x E Hj" 
respectively) . 

For {x,y} C Hi, we have XOAX = XOAY = YOAY = Hi, so 
f(x) 0B f(x) = f(x 0A y) = fey) 0B fey), that is H~(f(x» = f(Hi) = 
= H~(f(y'»' whence p'(J(x» = p'(J(y», because for {rI, r2} C I', 
TI =I- T2, H;l n H;2 = 0. 



172 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Now, we can define the function cp : I ~ I' in this manner: for 
i = p(x), x E H, cp(i) = p'(f(x)). 

Let us remark that cp is an one-to-one function. For this, let us 
suppose 3{j1,j2} C I, j1 #- j2, such that cp(jd = CP(j2). It follows 
f(HjJ = f(Hh ), which is absurd since Hj} n Hh = 0 and f is 
one-to-one. 

cp is also onto. Indeed, since f(H) = H, we have: 

H = U H:, = f (UHi) = Uf(Hi) = UH~(i) = U H:" 
i' El' iEI iEI iEI i' Elm <p 

so l' = Imcp. 
Therefore, cp is a bijection, hence III = 11'1. 
f is an isomorphism, so Vi E I, I!(Hi)1 = IHil, that is Vi E 1, 

a~(i) = 'H~(i)1 = IHil = ai· 
Let us prove now the strict monotony of cpo We shall use the 

following notations: ul\w= min{u, v}; uVv= max{u, v}; V (i,j)E 12, 
[il\j,iVj)={tEI I il\j::; t::; iVj} and V(i',j')EJ2, [i'I\j',i'Vj') = 
= {t' E I' I i' 1\ j' ::; t' ::; i' V j'}. 

Let (i,j) E 12 , i < j and let us consider x E Hi and y E H. 
From f(xoAY) = f(x)oBf(y) it follows 

f ( U Hr) = U H~, 
i~r~j <p(i)t\<p(j)~k~<p(i)V<p(j) 

whence 

U H~(r) = U H~; 
i~r~j <p(i)t\<p(j)~k~<p(i)V<p(j) 

therefore, {cp(r) Ii::; r ::; j} = {k E I I cp(i) 1\ cp(j) < k < 
::; cp( i) V cp(j)}, that is: 

(*) V(i,j)EI2, i<j, cp[i,j]) = [cp(i)J\cp(j),cp(i)Vcp(j»). 

We have cp( i) #- cp(j), since i < j and cp is a bijection; so, there 
are two possibilities: cp( i) < cp(j) or cp(j) < cp( i). 

Case A. For cp(i) < cp(j), cp is strict increasing on [i,j). Indeed, let 
us observe that: 
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AI. If [i, j] = {i, j}, that is obviously; 

A2 . If there exists rEI, such that i < r < j, then 
<p(i) = <p(i) A <p(j) < <per) < <p(i) V <p(j) = <p(j), since (*). 

A3 . If there exists (r, s) E 12, such that i < s < r < j, we obtain, 
using (*), that: <peri, r]) = [<p(i) A ep(r) , <p(i) V <per)]; so, using 
A2 , <p(i) = <p(i) A <per) < <pes) < <p(i) V <per) = <per) < <p(j). 

Case B. For <p(j) < <p(i), we can prove that <p is strict decreasing 
in a similar manner. 

Moreover, we shall prove that for V(i,j) E 12, such that i < j, 
we have two situations: 

P. If <pc i) < <p(j), then <p is strict increasing on I; 

2°. If <p(j) < <p(i), then <p is strict decreasing on I. 

Indeed, in the first situation, we have already seen that ep is 
strict increasing on [i,j]. Let f be an arbitrary element of I, such 
that j < f. So, <p(j) =I <p(f); if <p(f) < <p(j), then ep(f) < <p(i). 

Indeed, <p(f) rt [<p(i),<p(j)] = <p([i,j]), since <p is one-to-one. 
But, from <p(f) < <p(i), we obtain that <p is strict decreasing on 

[i, fJ, as it follows from the case B. So that, ep is strict decreasing on 
[i,j], too, which is not true. Therefore, Vf E I, j < f, <p(j) < <p(f), 
that is <p is strict increasing on [j, fJ, V f > j. 

Similarly, we can prove that <p is strict increasing on [f, i], for 
every f E I, f < i. Therefore, <p is strict increasing on I. 

Analogously, it follows 2°. 

"<==" For ViE I, we have IKd = IHil = ai = a~(i) = IH~(i) I = 
= I K~(i) I, so we can suppose Ki = K~(i)' 

Let us define!: (H, 0A) -+ (H, 0B) in this manner: for Vi E I, 
V k E K i , !(Xx,i) = X~'<P(i)' 

Hence, ! is a bijection. 
Let us verify now that ! is a morphism. 
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ForV(i,j) E [2 and V(x,y) E HiXHj, 3k E K i, 3h E Ki, such 
that x = Xx,i and Y = Yh,j' We have: 

f(x) 0B f(y)= f(Xk,i) 0B f(Yh,j)=X~,CP(i) °B Y~,cp(j) = U H:; 
cp( i)/\cp(j):::;t :::;cp( i)Vcp(j) 

f(XOAY) ~ f (,AJ,Y,,.;H.) ~ ",;,~,.;H~.). 
If <p is strict increasing, then 

<p( i 1\ j) = <p( i) 1\ <p(j) and <p( i V j) = <p( i) V <p(j); 

<p is also a bijection, so 

f(XOAY) = U H~(k) = U H;, 
cp( i/\j) :::;cp(k }:::;cp( iV j) cp( i)/\cp(j):::;sScp( i)Vcp(j) 

whence f(XOAY) = f(X)OBf(y). 
If <p is strict decreasing, then <p(il\j) = <p(i)V<p(j) and <p(iVj) = 

= <p( i) 1\ <p(j); <p is also a bijection, so 

f(XOAY) = U H~(k) = U H;, 
cp( iV j):::;cp(k )Scp( i/\j) cp( i)Acp(j) SsScp( i)Vcp(j) 

whence f(XOAY) = f(X)OBf(y)· 
Therefore, we have obtained that f is a morphism and now the 

theorem is proved. _ 

Finally, we give other examples of hyperstructures associated 
with fuzzy subsets. 

Let J..lA be a fuzzy subset on a universe H. 

6. Example. Let us define the hyperoperation in the following 
manner: 

Y®AX = X®AY = {z E H I J..lA(X) ~ J..lA(Z) ~ J..lA(Y)}U 

U{z E H I J..lA(X) ~ 1- J..lA(Z) ~ J..lA(Y)}' 
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where we have supposed J-tA(X) ::; J-tA(Y)· 
< H,0 > is not a join space, because from alb n cld ::/: 0 it 

results ::Ix, such that a E b 0 x and e Ed 0 x. 
If, for instance, 

[lA(a) = 1 -1.tA(a) E [J-tA(b) 1\ J-tA(X), J-tA(b) V J-tA(X)] and 
J-tA(X) E [J-tA(d) 1\ J-tA(X), J-tA(d) V J-tA(X)] 

and if J-tA(X) ::; J-tA(b) and J-tA(e) ::; J-tA(d), a possible situation is the 
next: 

J-tA(X) ::; [lA(a) ::; J-tA(e) ::; J-tA(b) ::; J-tA(a) ::; /-lA(d), whence: 

1. [J-tA(e), J-tA(b)]n[J-tA(a), J-tA(d)] can be void (for J-tA(b) ::/: /-lA(a»; 

2. J-tA(d) ::; J-tA(a) ~ [lA(e) ~ [lA(b), 
so [[lA(b), [lACe)] n [J-tA(a), J-tA(d)] can be void; 

3. PACe) ~ [lA(b) ~ [lA(a) ~ [lA(d), 
so [[lA(b),[lA(e)] n [[lA(a),[lA(d)] can be void; 

4. J-tA(b) ~ [lA(e) ~ [lA(a) ~ [lA(d), 
so [[lA(d),[lA(a)] n [J-tA(b),J-tA(e)] can be void. 

So that, 

a 0 d n b 0 e = ([J-tA(a) 1\ J-tA(d), J-tA(a) V /-lA(d)]U 

U[p,<t(a) 1\ [lA(d), [lA(a) V [lA(d)])n 

n([/LA(b) 1\ J-tA(e), J-tA(b) V J-tA(e)]U 

U([lA(b) 1\ [lA(e), [lA(b) V [lA(e)]) 

can be void. 

7. Example. Let us consider 
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We have 

V(x,y,Z) E H3 , (XOAy)OAZ = XOA (yOAZ) = 
= {a E H I tLA(a) E {tLAl(x), tLA(Y) , /-lA(Z), iLA(X), iLA(Y) , iLA(Z)}} 

and V(x,y) E H2, X E X[JAY so xOAH = HOAX = H. 
Therefore, (H,OA) is a hypergroup, with WH = H. Moreover, 

(H, 0A) is regular and reversible. (H,OA) is a join space, too. 
Let x E alb n c/d, 

tLA(a) E {tLA(b), /-lA(X) , iLA(b), iLA(X)} 

tLA (c) E {tLA (d), tLA (x), iLA (d), iLA (x)}}. 

We can find a E H, such that 

If tLA(a) is tLA(b) or PA(b), we choose a = b; 
If tLA(C) is tLA(d) or PA(d), we choose a = d; 
If {tLA(a), tLA(C)} C {tLA(X), iLA (x)} , then we choose a = x. 
So, (H,OA) is a join space. 

Let us consider on H the equivalence relation: 

For V (x, y) E H2, X [JAY = xU y. If X:::::;A y, x 0A Y = x. 
Let us consider now ql and q2 be two fuzzy subsets on H. 
Let H/:::::;ql = {HA; liE I} and H/:::::;q2 = {H~" Ii' E I'}. 
So, V,\ E [0,1]' HAi := {x E H I ql(X) = '\ 0; ql(X) = 1 - ..\J 

and V ..\~, E [0,1], HL, = {x E H I Q2(X) = ..\~, or Q2(X) = 1 - ..\~,}. 

Let us denote a1: = IHAJ and ai,2 = IH~;,I. 
8. Proposition. For Ql and Q2 fuzzy subsets on a universe H, we 
have (H, 0ql) ~ (H,Oq.,) if and only if III = 11'1 and {a11 hEI = 

= {ai7}i'EI'. 
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Proof. "==}" Let us denote the isomorphism by f. For x E H, we 
have f(x Oql x) = f(x) Oq2 f(x), that is f(x) = f(x). 

If Ixl = ar~ (x E HAiO )' then I f(x) I = ar~· 
But f(x) = {y E HI Q2(y) = Q2(f(X») = A:, or Q2(y) = I-A;'} 

o 0 

d I f( ) I - q2 8 ql - q2 an x - ai~' 0, aio - ai~ . 
Let us also prove that if io =1= jo, then i~ = jb. 
Indeed, if we suppose ::I ( io, jo) E 12, io =1= jo such that i~ = jb, 

that is ::Ix E HAiO and ::Iy E HAjO ' for which {f(x), fey)} C H~", 

then we have 

H~, = f(x) Oq2 fey) = f(xO ql y) = 
i~ 

= f(HAiO U HAjO ) = f(HAiO) U f(HAjO ), 

'0 

whence, f(HAiO) = f(x) = f(x) = H~" = f(HAiO) U f(HAjO )' con-
'0 

tradiction, since f is an isomorphism. 
80, III :S 11'1· Now, if we do the same reasoning for f-1 , we 

obtain 11'1 :S IJI, hence III = 11'1 and so we can consider I = I'. 
"{:=:::}" First, let us denote ai = arl = ar2, for every i E I 

and let us define the bijection f : (H, 0ql) --t (H,Oq2)' such that 
V j E I, f(HAj ) = H~'.. 

J 

Let {Xi,j, Xi',j} C H Ai" we have 

Let us consider now Xi,j E HAj and Xe,k E HAk , where j =1= k. 

f(Xi,j Oql Xt,k) = f(Xi,j U Xt,k) = f(HAj ) U (HAk ) = 

= f(HA) U f(HAk) = H~j U H~~ = f(Xi,j) Oq2 f(Xt,k), 

whence V(x,y) E H2, f(xoy) = f(x)of(y). 

Now, let (1,:S) be a totally ordered set. 

• 
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9. Theorem. Let 11" = {AhEI be a partition of a set H. Let us 
define 

8) V(x,y)EA;, xoy=Ai, ifi<j, xEAi , yEAj , xoy= U As. 
~ ~ 

i5;s5;j 

Then < H j 0 > is a hypergroup. 
~ 

From Theorem 9 we obtain 

10. Theorem. For every function /-l : H -t I such that V x E H, 
/-l-l/-l(X) = A/L(x) , the hypergroupoid defined 

is a join space which coincides with < H; 0 >. 

So if I = /-l(H) c [0,1]' < Hj 0 > is the join space associated 
with the fuzzy set < H j /-l >. 

11. Definition. We call < Hj 0> a I -pr-hypergroup, if a partition 
11" = {AhEl of H exists, which satisfies (8). 

12. Corollary. A hypergroup < H j 0 > is the join space associated 
with a fuzzy set if and only if it is an I -pr-hypergroup with 
I c [0, I}. 

Now, we consider the following generalization: 

Let H be a nonempty set, (L, V, /\) a lattice and /-l : H -t L. 

We define on H the following hyperoperation: 

This hyperoperation has been studied by I. Tofan and A.C. Volf. 

13. Theorem. If /-l(L) is a distributive sublattice of(L, V, /\), then 
(H, *) is a commutative hypergroup. 
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Proof. First of all, we shall verify the associativity law. We shall 
check that 

VeX, Y, z) E H3 , 

X * (y * Z)={ a E HI/L(x) 1\ /L(Y) 1\ /L(z)~/L(a)~/L(a) V /-ley) V /L(z)}. 

Let U E x * (y * z). Then there is v E Y * z, such that U E x * v. 
We have /L(y)I\/L(z) ~ /L(v) ~ /L(Y) V /L(z) and /L(x)I\/L(v) ~ /L(u) ~ 
~ /L(x) V /L( v). Hence /L(x) I\/L(Y) I\/L(z) ~ /L( u) ~ /L(x) V /L(Y) V /L(z). 

Now, let us consider a E H, such that 

/L(X) 1\ /L(Y) 1\ /L(z) ~ /L(a) ~ /-lex) V /L(Y) V /L(z). 

There exists b E /L-l[(/L(Y) 1\ /L(z» V (/L(Y) 1\ /L(a) V (/L(z) 1\ /L(a»J, 
since /L(L) is a sublattice of L. We have /L(Y) 1\ /L(z) ~ /-l(b) ~ 
~ /L(Y) V /L(z), whence bEy * z. On the other hand, we have 

/L( x )I\/-l(b )=/L( x )1\[ (/L(Y )I\/L(z) )V(/L(Y ) I\/L ( a) )V(/L(z )I\/-l( a) )J= 

=(/L( x )I\/L(Y )I\/L( z» V(/L( x )I\/L(Y )I\/L( a) )V(/L( x ) I\/L ( Z )I\/L( a»= 

=(/L(x)I\/L(y)I\/L(a»V(/L(x)I\/L(z)I\/L(a» ~ /L(a) and 

/L( a)=/L( a)I\(/L(x)V /L(Y)V /L(z»= 

=(/L( a )I\/L(x) )V(/L(a )I\/L(Y) )V(/L(a)I\/-l(z» ~ 

~ /L(x)V(/L(a)I\/L(y»V(/L(a)I\/L(z» ~ 

~ /L( x )V[ (/L(Y )I\/L( z» V (/L( a )I\/L(Y) )V(/L( a )I\/L(z) )J=/L( x)V /L(b). 

Therefore, /L(x) 1\ /L(b) ~ /L(a) ~ /L(x) V /L(b), that is 
a E x * b c x * (y * z). 

Thus, 

Similarly, it follows that 

(X*y)*Z = {a E H 1/-l(x)I\/L(Y)I\/L(z) ~ /L(a) ~ /-l(x)V/-l(Y)V/L(z)}. 

Hence V (x, y, z) EH3 , x*(y*z) = (x*Y)*Z. Moreover, Vex, y) EH2, 
we have x E x * y and x * y = y * x, whence H = H * x = x * H. 
Therefore, (H, *) is a commutative hypergroup. _ 
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14. Proposition. Let (L, V, /\) be a lattice with final element, 
denoted by 1. If f-l(L) is a sublattice of L, then there is u E H, such 
that: 

(i) x * u = Y * u ===* x * x = Y * Y; 

(ii) V(x,y) E H2, 3(m,M) E H2 such that n hu = M*u and 

n t*u = m*u. 
xEhu3y 

Proof. (i) Let u E f-l-l({I}). We have x * u = {t I f-l(x) ::; f-l(t)}. 
Since Y E Y * u = x * u, it follows f-l( x) ::; f-l(Y). Similarly, we obtain 
f-l(Y) ::; f-l(x), whence x * x = Y * Y = {t I f-l(x) = f-l(t) = f-l(Y)}. 

(ii) Let m E f-l-l(f-l(X) /\ f-l(Y)) and M E f-l-l(f-l(X) V f-l(Y». For 
any t E H, we have the equivalence relations 

t E x * u n Y * u -¢:::::} f-l(x} ::; f-l(t) and 

f-l(y) ::; f-l(t) -¢:::::} f-l(x) V f-l(Y) ::; f-l(t) -¢:::::} f-l(M) ::; f-l(t). 

Hence, x * u n y * u = M * u. 
Notice that if t E x * Y then f-l(t) ::; f-l(x) V f-l(Y) = f-l(M) so 

M*u ~ t*u. Then M*u ~ n hu ~ x*uny*u = M*u (since 
tEx*y 

x E x * Y 3 y), whence M * u = n t * u. 
tEx*y 

On the other hand, notice that 

xEm*u3y, so n t*u~m*u. 
xEt*u3y 

We also have x E t * u 3 Y ===* f-l(t) ::; f-l(x) /\ f.L(y) = f-l(m) ===* 
mEt * u ===* m * u ~ t * u and so m * u ~ n t * u, whence it 

follows the equality. • 
15. Remark. Notice that the hypergroup (H, *) satisfies the fol­
lowing properties for all (x, y) E H2 : 



APPLICATIONS OF HYPERSTRUCTURE THEORY 181 

1. x E x * y; 

2. x *y = y * x; 

3. x * (x * y) = x * y = (x * x) * y = (x * x) * (y * y) = (x * y) * y. 

Now, we consider a hyperstructure (H, *) which satisfies the 
conditions 1, 2, 3 of the above remark and (i), (ii) of the above 
proposition. 

We shall construct a lattice L and a map /-L : H -t L, such that 
"*" is exactly the hyperstructure induced by /-L, that is 

Let us define on H the following equivalence relation: 

and let L be the quotient set H / '"". 
Let us define the following relation: 

x :::; Y {::::;::> Y * Y ~ x * u. 

We shall verify that" s," is an order on L. Indeed, first of all, notice 
that":::;" is well-defined: 

if x = Xl, Y = Yt. and x S, y, then 

Yl * Yl = Y * Y ~ x * u = x * x * u = Xl * Xl * U = Xl * U. 

Moreover, we have Y * Y ~ x * U {::::;::> Y * U ~ x * u. 
Indeed, if y*y ~ x*u, then y*u = (y*y)*u ~ (x*u)*u = x*u. 

On the other hand, if y * u ~ x * u, then y * y ~ y * u ~ x * u. 
Now, let us verify the antisymmetry. If x:::; y and Y s, X, then 

x E y * u and y E x * u, whence x * u ~ (y * u) * u = y * u and 
similarly, we obtain y * u ~ x * u so X = y. 

In a similar way, the reflexivity and transitivity can be verified. 
Therefore (L,:::;) is an order set. For any (x, y) E L2, we have 

m = inf(x, y) and M = sup(x, y). Indeed, we have m s, x and 
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in ::; f); moreover, if i ::; x and i ::; f), then {x, y} C h u and by (ii) 
it follows m * u ~ t * u, so in ::; i. Therefore, in = inf(x, f). 

On the other hand, x ::; M and f) ::; M; moreover, if x ::; 2 
and f) ::; 2 then z * u ~ x * u n y * u = M * u, so M ::; 2. Thus 
M = sup(x, f). 

Notice that the greatest element of L is ft. 
Let us consider the canonical projection 

p : H --+ HI'" = L, p(x) = x. 

In the above conditions, it follows the following: 

16. Theorem. For any (x,y) E H2, we have 

x *y = {t E H I p(x) I\p(y)::; p(t)::; p(x) V p(y)}. 

Proof. Let m and M be the elements which appear in (ii). We 
have 

p(x) 1\ p(y) = p(m) and p(x) V p(y) = p(M). 

We shall verify the equivalence relation: 

t E x * Y ~ M * u ~ t * u ~ m * u. 

"===}: We have x E m*u, y E m*u and x*y ~ m*u, so we obtain 
x * y * u ~ (m * u) * u = m * u, whence t * u ~ m * u. By (ii) it 
follows that M * u ~ t * u. 

"{==: We have t * u ~ m * u = n s * u = n s * u, so 

t E t * u ~ x * y. Therefore 

t E x * Y ~ M * u ~ t * u ~ m * u ~ p(m) ::; p(t) ::; p(M) . 

• 
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§2. Direct limit and inverse limit of join 
spaces associated with fuzzy subsets 

In the first part of this paragraph, the direct limit of a direct family 
of join spaces is studied; in particular, join spaces associated with 
fuzzy subsets are considered. 

The second part of the paragraph is dedicated to the study 
of the inverse limit of an inverse family of hypergroups. It is 
again analysed the case of join spaces associated with fuzzy subsets. 
These results have been by obtained by V. Leoreanu. 

I). In [322], G. Romeo introduced the notion of the direct limit 
of a direct family of semihypergroups. First, let us recall some 
definitions: 

17. Definition. We say that (see [447]) a family {(Hi ,0i)}iEI of 
join spaces is a direct family if: 

1) (I,~) is a directed partially ordered set; 

2) V(i,j) E 12 , we have i =f j ~ Hi n H j = 0; 

3) V(i,j) E J2, i ~ j, there is a homomorphism <{Jij : Hi ---+ H j , 

such that <{Jjk 0 <{Jij = <{Jik, if i ~ j ~ k and <{Jii is the identity 
mapping for all i E I. 

Let H = UiE1Hi . Let us define, as in [322], on H the following 
equivalence relation: 

X rv y if and only if the following implication is satisfied: 

(x, y) E Hi X H j ::=:;. there is k E I; k 2: i, k 2: j, 
such that <{Jik(X) = <{Jjk(Y). 

If Xi E Hi and i ~ j, we denote <{Jij(Xi) by Xj. We also denote by x 
the equivalence class of x and by H the set of equivalence classes. 
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H is a hypergroup, respect to the following hyperoperation: 

x * fj = {z I 3i E I, 3Xi E x n Hi, 3Yi E fj n Hi, 

3zi E z n Hi, such that Zi E Xi 0i yd 

(see [3221). 

18. Proposition. If {(Hi, 0i) hEl is a direct family of semihyper­
groups, such that Vi E I, 3k E I, i ::; k, for which (Hk,0k) is a 
join space, then (H, *) is a join space. 

Proof. We only need to check the implication (see Theorem 4, 
[322]): 

From x/fjnz/if; of. 0 it follows that there is u E H, such that x E fj*u 
and z E if; * u; so, there is (i, j) E 12 , for which Xi E Yi 0i Ui and 
Zj E Wj ®j Uj. Since I is directed partially ordered, it follows that 
3k E I, such that i ::; k and j ::; k. Moreover, we can suppose that 
(Hk' ®k) is a join space, by the hypothesis. So, we have: 

and similarly, Zk E Wk 0k Uk, whence Uk E Xk/Yk n Zk/Wk and it 
follows that Xk 0k Wk n Yk 0k Zk of. 0, because (Hk,0k) is a join 
space. 

Hence, x * if; n fj * z of. 0. • 
We shall consider now F = {(Hi, f-Li)}iEI a family of fuzzy 

subsets. 
In §2, it is introduced a join space associated with a fuzzy 

subset, in the following manner: V(Xi' Yi) E Hl, we have: 

Xi 0i Yi = {Zi E Hi I min{f-Li(Xi), f-Li(Yi)} ::; f-Li(Zi) ::; 

::; max{f-Li(Xi), f-Li(Yi)}}. 
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19. Definition. Let (H, p) and (H', pi) be fuzzy sets. The func­
tion f:H--*H' is called a f.s. homomorphism if 

V(X,y) E H2, such that p(x) < p(y), we have /-l'(J(x» < /-l'(J(y» 

and if /-l(x) = /-l(y), then /-l'(J(x» = /-l'(J(y)). 

20. Definition. Let:F = {(Hi, /-li) hE! be a family of fuzzy subsets. 
We say that :F is a direct family of fuzzy subsets if: 

1) (1,::;) is a directed partially ordered set; 

2) V(i,j) E 12 , we have i i- j -¢=:? Hi n Hj i- 0; 

3) V(i,j) E 12, i::;j, there is a {;s. homomorphism 'Pij : Hi--+Hj, 
such that: if i ::; j ::; k, we have 'Pjk 0 'Pij = 'Pik and 'Pii is the 
identity mapping for all i E 1. 

Let {(Hi, /-li)}iEI be a direct family offuzzy subsets and let us 
consider now ;:t:H--*[O, 1], such that the following condition holds: 
V(x, iJ) E H2, ;:t(x) < ;:t(iJ) if and only if 3i E 1, 3Xi E x n Hi, 
3Yi E iJ n Hi, such that /-li(Xi) < /-li(Yi). 

21. Proposition. The following equivalence relation holds: 

[3i E 1, 3Xi E x n Hi, 3Yi E iJ n Hi, such that /-li(Xi) < /-li(Yi)] 
-¢=:? [Vj E 1, VXj Ex n Hj , VYj E Y n Hj : /-lj(Xj) < /-lj(Yj)]· 

Proof. "===>" First, we show that V{Xi,Xa c x n Hi, we have 
/-li (Xi) = /-li (xD· 

Indeed, since Xi !'oJ x~ it follows that there is k E 1, i ::; k, such 
that 'Pik(Xi) = 'Pik(xD, that is Xk = x~. 

Suppose that /-li(Xi) < /-li(X~). Then /-lk('Pik(Xi» < /-lk('Pik(Xm, 
that is /-lk(Xk) < /-lk(X~) contradiction with Xk = x~. 

We shall check now that Vj E 1, we have /-lj(Xj) < /-lj(Yj). 
For j E 1, i ::; j, we have /-lA'Pij(Xi» < /-lj('Pij(Yi» , that is 

/-lj(Xj) < /-lj(Yj)· 
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Let us suppose that there is k E I, such that Pk(Xk) > Pk(Yk). 
Since (1, S) is directed partially ordered, it follows that there is 
t E f, k S t, i st. Since Pk(Xk) > Pk(Yk) it follows Pt(Xt) > Pt(Yt) 
and since Pi(Xi) < Pi(Yi) it follows /-It(Xt) < Pt(Yt), contradiction! 

Therefore, for any j E I, we have Pj(Xj) < Pj(Yj). • 

22. Corollary. We have 

p(x) = P(y) 

¢::::> [3iEf, 3XiExnHi, 3YiEfj n Hi> such that Pi (Xi)=Pi (Yi)] 

¢::::> [Vj E f, VXi Ex n Hi, VYi E fj n Hi, Pj(Xj) = Pj(Yj)]· 

23. Remark. Let (H, p) and (H', p') be fuzzy subsets. If f:H-+H' 
is a f.s. homomorphism, then the following implication holds: 

V(X, y) E H2, f(x) = f(y) ====> p(x) = p(y). 

Proof. Indeed, since f(x) = f(y) it follows p'(J(x}) = Jl(J(y». 
If we suppose now that p(x) < p(y), then p'(J(x» < p'(J(y», 
contradiction! Therefore, p(x) = p(y). • 

So, we can define the function: 

g: Imf ~ [0,1]' g(J(x» = p(x). 

We can choose p in many manners. 

24. Examples. 

1. Let io E f and let us define p'(x) = Pio(Xio), "Ix E H. Then 
we can consider p(x) = /-l'(x), "Ix E H. 

2. Let F be a finite subset of f and IFI the cardinal of F 

/-l"(x) = L Pi(xi)/IFI· 
iEF 
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Remember that V{Xi' xa ex n Hi, we have Pi(Xi) = Pi(X~). 
If P" (x) <p"(f)) , that is L Pi(Xi)/IFI< L Pi(Yi)/IFI, 

iEF iEF 

then 3io E F, such that Pio(Xio) < Pio(Yio). So, we can consider 
p,(x) = p"(x), Vx E H. 

25. Proposition. Let {(Hi, Pi)}iEI be a direct family of fuzzy 
subsets and let {(Hi, 0i)}iEI be the family of join spaces associated 
with the previous fuzzy subsets. Then {(Hi, 0i)hEl is a direct family 
of join spaces. 

Proof. We only need to prove that for V(i,j) E 12 , i ::; j, 
<Pij : Hi ----t Hj is a homomorphism of join spaces, that is 
V(Xi' Yi) E H;, VZi E Xi 0i Yi, we have <Pij(Zi) E <Pij(Xi) OJ <PiiCYi) , 
that is Zj E Xj OJ Yj. 

Indeed, by Zi E Xi 0i Yi it follows 

Suppose Pi(Xi) ::; Pi(Yi); we have Pi(Xi) ::; Pi(Zi) ::; Pi(Yi). Since for 
i ::; j, <Pij is a f.s. homomorphism, we obtain 

• 
26. Theorem. Let {(Hi, Pi) hEl be a direct family of fuzzy subsets 
and {(Hi, 0i) }iEI the direct family of join spaces associated with the 
previous fuzzy subsets. Let (H, *) be the direct limit of the direct 
family of join spaces. 

Then (H, *) is also a join space, associated with a fuzzy subset. 

Proof. Let (H, 0) be the join space associated with a fuzzy subset 
p" which satisfies the following condition: 

P,(x) < p(y) ¢=} [3i E 1, 3Xi E xnHi, 3Yi E ynHi : Pi(Xi) < Pi(Yi)]. 

Thenxoy = {z E H I min{p,(x),p(f))}}::; p,(z)::; max{p(x),p,(f))}. 
Suppose that p,(x) ::; p,(f)). Then x 0 y = {z I p(x) ::; p(x) ::; 
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::; p(y)} = {z I 3i E 1, 3Xi Ex n Hi, 3zi E z n Hi : /-Li(Xi) ::; /-Li(Zi) 
and 3j E 1, 3zj E z E Hj , 3Yj E Y n Hj : /-Lj(Zj) ::; /-Lj(Yj)}· 

Since 1 is a directed partially ordered set, it follows that there 
is k E 1, i ::; k, j ::; k. We have /-Lk('Pik(Xi)) ::; /-Lk('Pik(Zi)) that is 
/-Lk(Xk) ::; /-Lk(Zk) and similarly, /-Lk(Zk) ::; /-Lk(Yk). Therefore, x 0 y = 
= {z 13kE1, 3xkExnHk, 3zk EznHk, 3YkEynHk : /-Lk(Xk)::; 
::; /-Lk(Zk)::; /-Lk(Yk)} = {z 13k E 1: Zk E XkOkYk} = x*y. Then the 
join spaces (H,o) and (H,*) coincide. _ 

II) First, we shall introduce the notion of inverse limit of hyper­
groups and then we shall study it for an inverse family of join spaces 
associated with fuzzy subsets. 

27. Definition. We say that a family of hyper groups {(Hi, 0i)};EI 
is an inverse family if: 

1. (I,::;) is a directed partially ordered set; 

2. V(i,j) E ]2, we have Hi n Hj = 0 ¢=> i i- j; 

3. V( i, j) E 12, i :::: j, there is a homomorphism of hypergroups 
'l/Jij : Hi --+ Hj , such that: if i :::: j :::: k, 'l/Jjk 0 'l/Jij = 'l/Jik and 
Vi E 1, 'l/Jii is the identity mapping. 

Let us consider now (II Hi, 0) the direct product and let 
iEI 

where P = (Pi)iEI. If H i- 0, we define on H the hyperoperation: 

x ° if = {z E H I Z E x 0 if} = x 0 if n H. 

The assumption H i- 0 is really necessary. In [447], G. Gratzer 
presents an example of an inverse family of nonvoid sets, whose 
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inverse limit is void. The following theorem shows that this cannot 
happen if all the sets are finite and nonvoid. 

28. Theorem. [[447], Th.1, p.132] The inverse limit of a family 
of nonvoid finite sets is always nonvoid. 

Another situation for which the inverse limit of a family of 
nonvoid sets {HihEI is nonvoid is the following one: 

If I has a maximum element, then H f:. 0. 
Indeed, if s = max I, then Vp = (Pi)iEI. 3p E H. Pi = 'l/Jsi{Ps), 

because V(i,j) E 12 , i:2: j, we have: 'l/Jij ('l/Jsi{Ps» = 'l/Jsj{ps), that is 
'l/Jij(jii) = Pj· 

In the following, we shall consider (I,~) a partially ordered 
set, with a maximum element. 

29. Theorem. Let I be a partially ordered set, with a maximum 
"element s. If {(Hi, ®i)hEI is an inverse family of hypergroups, then 
(H,o) is a hyper group. Moreover, if Vi E I, (Hi, ®i) is a join space, 
then (H, 0) is also a join space. 

Proof. Let us verify first that (H, 0) is a hypergroup. 

The associativity. We shall check that V(X, y, z) E H3, 
(xoy)oz=(x®y)®znH. We have to verify only the inclusion "::>'~ 
Let t E (x ® y) ® z n H. There is U E x ® y, such that t E U ® Z, 
so Vi E I, 4 E Ui ®i Zi, particularly ts E Us ®s zS. For all j E I, 
we have 'l/JSj(ts) E 'l/Jsj(us) ®j 'l/Jsj(zs), that means '0 E 'l/Jsj(us) ®/Zj. 
Let U E H, defined in this manner: Uj = 'l/Jsj(us), Vj E I. We have: 
~ E Uj ®j Zj, Vj E I, whence t E U 0 z. 

Since U E x ® y, it follows Uj E Xj ®j yj, Vj E I; so, 
Us E Xs ®s Ys, whence 'l/Jsj(us) E 'l/JsAxs) ®j 'l/Jsj(ys), Vj E I, that is 
Uj E Xj®jYj, Vj E I, hence U E x ® Y n H = x 0 y. Then, 
t E U 0 Z C (x 0 y) 0 z. 

Similarly, we prove that x 0 (y 0 z) = x ® (y ® ~ n H. Therefore 
(x 0 y) 0 z = (x ® y) ® z n H = x ® (y ® z) n H = x 0 (y 0 z), 
V(x, y, z) E H3. 
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The reproducibility. For any (x, y) E H2, there is Z E II Hi 
iEI 

such that x E y ® z, whence Vi E I, we have Xi E Yi ®i Zi. From 
Xs E Ys ®s zs, it follows 'l/Jsj(xs) E 'l/Jsj(Ys) ®j 'l/Jsj(zs), Vj E I, that is 
Xj E Yj ®j 'l/JsiCzs). Let us consider Z E H, such that Zj = 'l/JsiCzs), 
Vj E I. So, Vi E I, we have Xj E Yj ®j'ij , whence x E yo Z. 
Therefore yo H = H and similarly, we have Hoy = H. 

Therefore, (H, 0) is a hypergroup. 
Let us suppose now that Vi E I, (Hi, ®i) is a join space. We 

shall prove the following implication: 

VeX, y, z, t) E H4 , xl Y n tl Z =J 0 ==? x 0 Z n Y 0 t =J 0. 
o 0 

From x I fj n tl Z =J 0, it follows that ::lit E H : x E yo it E Y ® it and 
o 0 

t E Z 0 u c Z ® it. Then, x I fj n tl z =J 0 in (II Hi, ®) , which is a 
1)9 1)9 iEI 

join space, so x®zny®t =J 0. Hence ::Iv E x®z and v E y®t, that 
means Vi E I, Vi E Xi ®i Zi and Vi E Yi ®i '4. From Vs E Xs ®s zs, it 
follows that Vj E I, 'l/Jsj(vs) E 'l/Jsj(xs) ®j 'l/Jsj(zs) = Xj ®j Zj. 

Let us consider v E H, such that Vj = 'l/Jsj(vs ), Vj E I. We 
have Vj E Xj ®j Zj, Vj E I, that means v E x 0 z. Similarly, from 
Vs E Ys ®s ts, it follows v E yo t. 

Therefore, x 0 Z n y 0 t =J 0, so (H, 0) is a join space. _ 

30. Definition. (H, 0) is called the inverse limit of the inverse 
family {(Hi, ®i)hE!· 

Finally, we shall analyse the inverse limit of an inverse family 
of join spaces associated with fuzzy subsets. 

31. Definition. Let:F = {(Hi, !Li) hE! be a family offuzzy subsets. 
We say that :F is an inverse family of fuzzy subsets if: 

1. (1,::;) is a directed partially ordered set; 

2. V(i,j) E 12 , we have i =J j ¢=:? Hi n Hj = 0; 
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3. V(i,j)EI2, i 2: j, there is a f.s. homomorphism'tfJij: Hi-,>Hj, 
such that: if i 2: j 2: k, we have 'tfJjk ° 'tfJij = 'tfJik and <{Jii is the 
identity mapping for all i E I. 

32. Proposition. Let:F = {(Hi, tLi)}iEI be an inverse family of 
fuzzy subsets. Then the family {(Hi, 0i)}iEI of join spaces, associa­
ted with the previous fuzzy subsets, is an inverse family. 

Proof. We shall check that V(i,j) E 12, i 2: j, ¢ij is a homomor­
phism of join spaces, that means: if Zi E Xi 0i Yi, then 'tfJij(Zi) E 

E 'tfJij(Xj) 0j'tfJij(Yi). 
Suppose /li(Xi) :s; /li(Yi). From Zi E Xi 0i Yi, it follows /li{Xi) :s; 

:s; /li{Zi) :s; /li{Yi) and since 'tfJij is a f.s. homomorphism, we obtain 

/lj{'tfJij{Xi» :s; /lj{'tfJij{Zi» :s; /lj{'tfJij{Yi», 

• 
33. Proposition. Let {(Hi, /li)}iEI be an inverse family of fuzzy 
subsets and {(Hi, 0i) hE! the associated inverse family of join spaces. 
If H f:. 0 and :3i E 1 : /li{Xi) < /li(fli), where x = {Xi)iEI E Hand 
Y = (Yi)iEI E H, then Vj E I, we have tLj{Xj) < /lj{Yj). 

Proof. Let us consider j E I, j :s; i. Since 'tfJij is a f.s. homomor­
phism, from /li(Xi) < /li{Yi) it results /lj('tfJij{Xi» < /lj('tfJij{Yi», that 
is /lj(Xj) < /lAYj)· 

Let us suppose that :3p E I, such that /lp(xp) 2: /lp(yp). Since 
I is a directed partially ordered set, it follows that :3t E I, t 2: i, 
t 2: p. 

If /It{Xt) < /It(Yt) it follows /lp{ 'tfJtp(Xt» < /lp( 'tfJtp(Yt» that is 
/lp(xp) < /lp{Yp), contradiction with the made assumption. 

If /It(Xt) 2: /It(Yt) it follows /li{¢ti(Xt» 2: /li('tfJti(Yt» that is 
J-li(Xi) 2: /li(Yi), contradiction with the hypothesis. 

Therefore, Vj E I, we have /lj(Xj) < /lj(Yj). • 

34. Corollary. In the hypothesis of the previous proposition, we 
have that if:3i E I, such that /li(Xi) = /li(Yi), then Vj E I, /lj{Xj) = 
= /lj(Yj). 
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35. Theorem. Let {(Hi, !li)}iEI be an inverse family of fuzzy 
subsets, {(Hi,Oi}}iEI the associated inverse family of join spaces 
and let suppose H 1= 0. Then the inverse limit (H, 0) is also a join 
space associated with a fuzzy subset. 

Proof. Let (H, .) be the join space associated with a fuzzy subset 
ji, which satisfies the following condition: if (x, if) E H2, then 

We have 

X. Y = {Z E H I min{ji(x), ji(if)}} ~ ji(z) ~ max{ji(x) , ji(fJ)}. 

Suppose ji(x) ~ y(y). Then x • y = {z I ji(x) ~ ji(z) ~ ji(Y)}. 
From ji(x) ~ ji(z) and the previous proposition, it follows that 

!li(Xi) ~ !li(Zi), Vi E I. Therefore, x • y = {z l!li(Xi) ~ !li(Zi) ~ 
~ !li(Yi), Vi E I} = {z I Zi E Xi 0i Yi, Vi E I} = x ° y. 

Then the join spaces (H, .) and (H, 0) coincide. _ 

36. Remark. We can choose ji is many manners. For instance, 

1. VX E H, ji(x) = !lio(Xio) for some io E I. 

2. Vx E H, ji(x) = L !li(Xi)/IFI, where F is a finite subset of 
iEF 

I, and IFI is the cardinal of F. 

Indeed, we have ji(x) < /i(Y) -¢:::=:> 3i E I, such that !li(X) < !li(fJi). 

§3. Rough sets, fuzzy subsets 
and join spaces 

Let H be a set and R be an equivalence relation on H. Let A be a 
subset of H. 

The main question addressed by rough sets (Pawlak, 1982) is: 
How to represent A by means of H/R? 
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Denote by R( x) the equivalence class of x E H. 

37. Definition. A rough set is a pair of subsets (R(A), R(A)) 
of H, which approximate as close as possible A from outside and 
inside, respectively: 

R(A) = U R(x); 
R(x)nA¥0 

R(A) = U R(x). 
R(x)~A 

Rough sets have been utilized as an instrument to study in deep 
the theory of knowledge (Artificial Intelligence) by Pawlak (a Polish 
mathematician) and many others. 

One can remark (Biswas, 1999) that Rough Sets can be consi­
dered a special case of Fuzzy subsets, letting correspond to 
(R(A), R(A)) the membership function J-LA, defined 

() _IR(x)nAI 
J-L A x - IR(x)1 . 

Now, let us see how join spaces can be associated with rough sets. 
The results presented in this paragraph belong to P. Corsini. 

38. Theorem. The partial hyperoperation 

V(x,y) E H2, x oy = R({x,y}) - R({x,y}) 

is defined everywhere if and only if 

(c) "Ix E H, IR(x)1 ~ 3 

Proof. Let us prove now the implication ¢=. 

Set V x IR(x)1 ~ 3. Then we have 

R({x,y}) = U R(z) = 0 
R(z)c{x,y} 
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whence xoy = R(x) U R(y) i= 0. 
Let us prove the implication ~. 
Let us suppose x exists such that R(x) = {x, x'} and x i= x'. 

Then 

xox' = u R(z) - U R(z) = R(x) - R(x) = 0. 
R(z)n{x,x'}# R(z)C{x,x'} 

Let us suppose x exists such that R( x) = {x}. 
By the same way one finds xox=R(x) - R(x) = 0. Therefore, 

V x, IR(x)I2:3. 
Then (H; 0) is a hypergroupoid if and only if V x, IR(x)1 2: 3 .• 

39. Theorem. < H; 0> is a join space if and only if 

V x E H, IR(x)1 2: 3. 

Proof. Set V (x, y), x®y = R( {x, y}) = R(x)UR(y). By Theorem 
38 it is sufficient to prove that if < H; 0 > is a hypergroupoid, then 
it is a join space. 

Let us remark that the hypothesis IR(x)1 2: 3 implies: 
< 0 >=< ® >, so xoy = R(x) U R(y). It follows that < H; 0 > 
is a commutative semi-hypergroup. 

Moreover, since every x is an identity, it follows that < H; 0 > 
is a hypergroup. 

It remains to prove that the implication a/b n e/d i= 0 ~ 
aod n boe i= 0 is satisfied. 

Set (I): alb 3 x E e/d, that is a E box, e E dox, whence 

a E R(b) U R(x), e E R(d) U R(x) 

moreover aod = R(a) U R(d), boe = R(b) U R(e). 
We have a E aod, so, if a E R(b) c boe, it follows a E aodnboe. 
By the same way, e E R( d) implies e E aod n boe. 
Let us suppose now a¢:R(b) and e¢:R(d). Then it follows a E 

R(x) whence x E R(a) C aod, e E R(x), whence x E R(e) C boe. 
Therefore (I) implies aod n boe i= 0, so < H; ® > is a join space .• 
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Let us suppose now IHI < Xo. 

40. Theorem. Let < P* (H); /-l > be a fuzzy subset. There is a 
knowledge < H; R > such that 

V X E P*(H), /-leX) = /-lR(X) = IR(X) I 
R(X) 

if and only if the following condition is satisfied 

(D) An integer m > 0, and a partition of H, {Ai}iEI(m) exist 
so that, for all non empty subsets Sand J of I (m) such that 
SnJ = 0, for every family {A~}sEs of subsets, A~eAs, setting 

i-
Vi E I(m), ai = IAil, we have: 

1) /-l (UA~) = O. 
sES L 

2) /-l (UAj U UA~) = jEJ
aj 

. 
jEJ sES Laj + Las 

jEJ sES 

Proof. (D) is sufficient. 
Let R be the equivalence relation on H such that 

H/R = {A liE I(m)}. 
V X E P* (H), we can represent X as the union 

where 

X= UAjU UA~ 
jEJ sES 

JUSeI(m), Jns=0 

J = {j E I(m) I Aj eX}, 

S = {s E I (m) I As ct. X, A~ = X n As # 0} 

So, we have: 

jEJ 

R(X) = U At = U Aj U U As 
At nxi-0 jEJ sES 
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Therefore 

The condition (D) is necessary. 
Let {AhEI(m) be the set of equivalence classes of R. 
Then V X E P*(H), if we set 

we have 

J = {j E I(m) I Aj eX} 

S={sEI(m)IAd~X}, VsES, A~=Asnx, 

jEJ 

So we obtain: 

§4. Direct limits and inverse limits 
of join spaces associated 
with rough sets 

• 

The results of this paragraph have been obtained by V. Leoreanu. 
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I) First of all we establish necessary and sufficient or only sufficient 
conditions for direct limits and products of models associated with 
rough sets to be join spaces. 

Let us recall some definitions. A model is a pair < H, p >, 
where H is a nonempty set and p is a binary relation on H. 

Let us recall what a rough set is. 
Let H be a nonempty set and R an equivalence relation on H. 

For every X c H, X # 0, set 

R(X) = U R(y) and R(X) = U R(z) = U R(w). 
R(y)CX R(z)nX¥0 wEX 

The pair (R(X), R(X» is a rough set. We have seen that a join 
space is associated with a rough set in the following manner: 

41. Theorem. Let R be an equivalence relation defined on a 
nonempty set Hand < 0 > the partial hyperoperation defined 

xoy = R({x,y}) - R({x,y}). 

Then < 0 > is defined everywhere ~ V x E H, IR(x)1 ~ 3 ~ 
< H,o > is a join space. 

If < H'; p' > is another model, we say that a function f:H --t H' 
is a homomorphism of the models if for every (x, y) E p, we have 
(f (x),f (y» E p'. A family of models {< Hi, Pi > hEI is direct if the 
following conditions holds: 

(i) (I,:::;) is a directed partially ordered set; 

(ii) V (i, j) E 12 , i # j ==? Hi n H j = 0; 

(iii) V(i,j) E 12 , if i :::; j, a homomorphism of models 
cp; : Hi --t H j is defined, such that if i :::; j :::; k, we have 
cpicp; = cpi and Vi E I, cp~ = Id(Hi). 

On H = UHi the following binary relation is defined as follows: 
iEI 
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k ~ i, k ~ j, such that CPHXi) = cp{(Yj). 
The relation ""," is an equivalence relation. 
cp~(Xj) is denoted by Xj. 
Set H = Hlrv. 
On H is defined the binary relation p as follows 

(x,y) E p ~ 3q E I, 3xq E xnHq, 

3zq E z n Hq, such that (xq, Zq) E Pq. 

Let < H,0 > (Hi,0i)) be the partial hypergroupoid corres­
ponding to p (Pi, respectively) and defined by (*). 

42. Theorem. If < H,0 > is a join space, then there is f E I, 
such that (H£,0£) is a join space. 

Moreover, for every i E I,i ~ f, we have that (Hi, 0i) is a join 
space. 

Proof. Since < H, 0 > is a join space, then V x E H, we have 
Ip(x)I~3. Let {x, ih, Y2} be three different elements of p(x). We 
have 

ViEI, VXiExnHi, VYliEYlnHi, 

V Y2i E Y2 n Hi, Xi =1= Yli =1= Y2i =1= Xi, 
(1) 

otherwise x, Yl> Y2 would not be different. Since x PYI, it follows 
that 

3j E I, 3xj E x n Hj, 3Ylj E YI n Hj : (Xj, Ylj) E Pj· 

Similarly, since x PY2, it follows that 

But Xk = X = Xj, so Xk rv Xj, that means 3£ E I, £ ~ k, £ ~ j, such 
that CP~(Xk) = ~(Xj) = Xl. Using now the fact that V (i,j) E ]2, 
i ::; j, cp} : Hi --t Hj is a homomorphism of models, we have the 
implications: 
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and 
(Xk,Y2k) E Pk ==} (cp;(Xk),CP;(Y2k)) E Pl· 

Therefore, (Xi, Yll) E Pi 3 (Xi, Y2i)· 
By (1), we have Xl -I Yll -I Y2i -I XI., so !Pi(XI.)! ~ 3. 

199 

Since x is whichever in H, it follows that XI. is whichever in HI.. 
So, by Theorem 41, it follows that (Hl ,0l) is a join space. 

Now, since (Xl, Yll) E Pi 3 (Xl, Y2t) it follows that ViE I, i ~ £, 
we have (cpf(xl),cpf(Yll)) E (cpf(X(),CPf(Y2l)) that is 

(Xi, Yli) E Pi 3 (Xi, Y2i). 

Moreover, by (1), it follows Xi -I Yli -I Y2i -I Xi and since Xi is 
whichever in Hi, we have that (Hi,0i) is a join space, by Theorem 
41. _ 

43. Theorem. < H,0 > is a join space if and only if:3£ E I, 
V Xl E Hl , :3{Yll' Y2l} C Pl(XI.) such that Xi -I Yu -I Y2l -I Xl· 

Proof. "==}" By the previous theorem we have that 

:3£ E I, V Xl E Hl , :3(Yll' Y2l) E Hi, 

such that x£ -I Yll -I Y2l -I XI. and Vi E I, i ~ £, cpHxl.) = Xi -I 
-I cpf{ylI.) = Yli -I CPI(Y2i) = Y2i -I Xi and (Xi, Yli) E Pi 3 (Xi, Y2i) , so 
it results the thesis. 

"<==" Let us suppose that :3£ E I, V Xl E HI., :3{yU, Y2d C 

Pl(Xl) : XI. -I Yll -I Y2l -I Xl· So, V XI. E H, !p(Xl)! ~ 3, whence 
< H,0 > is a join space. _ 

44. Proposition. Let {< Hi, Pi > hE! be a direct family of models. 
If there is k E I, such that Vt E I, t ~ k, cpf is injective, and such 
that < Hk, 0k > is a join space, then < H, 0> is a join space. 

Proof. By Theorem 41, < H k ,0k > is a join space if and only if 
V(x,y) E H'f, 

X0kY = Pk({X,y}) - Pk({x,y})-I0 
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if and only if V xE Hk, \Pk(x)\2::3. We have the implication (x, y) EPk 
~ (x,f}) E p. 

Let us remark that if (yt, Y2) E H'f, YI -I Y2, then Vt E I, 
t 2:: k, we have 'P~(YI) -I 'P~(Y2)' that means iiI -I f}2· Therefore, 
if Vx E Hk we have \Pk(X)\ 2:: 3, then Vx E H, \p(x) 1 2:: 3, so, by 
Theorem 41, < H,0 > is a join space. _ 

45. Remark. If I has a maximum M and 'Pit is injective, then 
Vt E I, t 2:: k, we have 'P~ is injective. 

Proof. We have 'Pk 0 'P~ = 'Pit and since 'Pit is injective, it follows 
'P~ is injective. -

Direct products 

Let < H!, Q91 > and < H 2, Q92 > be two hyperstructures, where for 
all i E {I, 2}, V (x, y) E HI, 

XQ9iY = Pi({X,y}) - Pi({X,y}). 

Let PI XP2 be the binary relation defined on H = HI XH2 as follows: 

Let Q9 be the hyperoperation defined on H as follows: 

46. Proposition. If < HI, Q91 > or < H2, Q92 > is a join space, 
then < H, Q9 > is a join space. 

Proof. Let us suppoose < HI, Q91 > is a join space. Then Val E HI, 
\PI(al)\ 2:: 3. Let {at, a2, a3} C PI(al), al -I a2 -I a3 -I al· Then 
V Xl E H2 , it follows that «at, Xl)' (aI, Xl», «al, Xl)' (a2, Xl» and 
« at, Xl)' (a3, Xl» are different elements of PI x P2, whence 
V(at,xI) E H, \(Plxp2)«al,xl»\2:: 3, so < H,Q9 > is a join space. 
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-
47. Proposition. If < H l ,0l > and < H2,02 > are partial 
hypergroupoids defined as in Theorem 37, such that 

Val E HI, Ipl(al)1 = 2 and 

V Xl E H 2 , 1P2(Xl)1 = 2, 

then < H, 0 > is a join space. 

Proof. For every al E HI and Xl E H2, set Pl(al) = {al,a2} 
and P2(Xl) = {XbX2}' So, ((al,xl),(abxl)), ((abXl),(a2,Xl)), 
((aI, Xl),(a2, X2)) are different elements of PlXP2, that is V(ah Xl) EH, 
I(Plxp2)(al,xl)l2:: 3, that means < H,0 > is a join space. 

48. Remark. By the proof of the previous proposition, it follows 
that if < H,0 > is a join space and (ab Xl) is whichever in H, we 
have: 

(i) if Ipl(al)1 = 1 then Ip2(Xl)l2:: 3; 

(i) if Ip2(al)1 = 2 then Ip2(Xl)1 2:: 2; 

(i) if Ip2(al)1 = 3 then Ip2(Xl)1 can be whichever nonzero natural 
number. _ 

II) In the following, it is shown that the direct (inverse) limit of a 
direct (inverse) family of join spaces associated with rough sets is 
a join space associated with a rough set. 

11.1) Direct limit of a direct family of join spaces associated 
with rough sets 

Let {< Hi, Pi > hEI be a direct family of models, H = UHi and let 
iEI 

consider on H the following equivalence relation (see [322]): X rv y 
if and only if the following implication is satisfied: 
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If Xi E Hi and i ::; j, we shall denote 'Pij(Xi) by Xj and by H the 
quotient set HI rv= {x I X E H}. 

We define on H the following binary relation (see [232]): 

(2) 
v (x, fj) EH2, xp*fj if and only if 3iEI, 

3Xi E x n Hi, 3Yi E fj n Hi, such that XiPiYi· 

49. Definition. (H, p*) is called the direct limit of the direct 
family of models {Hi, Pi hE]. 

50. Proposition. If ViE I, Pi is an equivalence relation on Hi, 
then p* is an equivalence relation on H. 

Proof. The reflexivity and symmetry result directly by the defini­
tion of p*. Let's suppose now xp*fj and fjp*z. It follows there are 
(i,j) E 12, Xi E xnHi, Yi E fjnHi, Yj E fjnHj and Zj E znHj , 
such that XiPiYi and YjPjZj. We have Yi rv Yj, so there is k E I, 
k ~ i, k ~ j, such that 'Pik(Yi) = 'Pjk(Yj) = Yk· Since 'Pik and 
'Pjk are homomorphisms of models, it follows: 'Pik(Xi)Pk'Pik(Yi) and 
'Pjk(Yj)Pk'Pjk(Zj), that is XkPkYk and YkPkZk, whence XkPkZk, so xp*z. 
Therefore, p* is transitive, hence it is an equivalence relation. • 

51. Proposition. Let {< Hi, Pi > liE] be a direct family of models, 
where Vi E I, Pi is an equivalence relation, such that V Xi E Hi, 
IPi(Xi)1 ~ 3. For any i E I, let us consider the hyperoperation "OPi" 

defined on Hi as in (*) (Theorem 41), that is: 

Then {< Hi, 0Pi > liE] is a direct family of join spaces. 

Proof. It is sufficient to notice that if (i, j) E 12, i ::; j and 'Pij 
is a homomorphism of models, then 'Pij is a homomorphism of join 
spaces. Indeed, Vi E I, V(Xi,Yi) E Hi, we have 
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because Pi is an equivalence relation and so, any equivalence class 
has at least three elements. 

On the other hand, if x~ E Pi(Xi), then V j E I, i ~ j, 

since <{Jij is a homomorphism of models. Therefore, 

whence 

<{Jij(Xi 0Pi Yi) = <{Jij(Pi(Xi) U Pi(Yi)) = <{Jij(Pi(Xi» U <{Jij(Pi(Yi» = 
= Pj(Xj) U Pj(Yj) = Xj 0Pj Yj = 'Pij(Xi) °Pj <{Jij(Yi), 

hence <{Jij is a homomorphism of join spaces. • 
Let us consider on H the following hyperoperation (see [322]): 

x * fj = {z 13i E I, 3x; E x n Hi, 3Yi E fj n Hi, 
3zi E z n Hi, such that Zi E Xi °Pi yd. 

52. Definition. (H, *) is called the direct limit of the direct family 
of join spaces {< Hi, 0Pi > hEI. 

53. Theorem. Let {< Hi, Pi > }iEl be a direct family of models, 
where ViE I, Pi is an equivalence relation, such that V Xi E H;, 
IPi(Xi)1 2: 3 and let {< Hi,opi > hEI be the corresponding direct 
family of join spaces. Then the direct limit (H, *) of the previous 
direct family of join spaces is a join space, associated with the model 
(H, p*), where p* is the equivalence relation defined by (2). 

Proof. First, notice that (H, *) is a join space, being a direct limit 
of a direct family of join spaces (Prop. 1, [235]). 

Let" 0p' " be the hyperoperation, associated with the equiva­
lence relation p*, defined as in (*), Theorem 41, on the set H : 

x 0p' fj = p*( {x, fj}) - t( {x, fj}) = p*( {x, fj}) = p*(x) U p*(fj), 
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since p* is an equivalence relation and so, V z E H, Ip* (z) I 2:: 3. On 
the other hand, 

x * y = {z E H I 3i E I, 3Xi E x n Hi, 3Yi E Y n Hi, 
3zi E z n Hi, such that Zi E Xi 0pi Yi}. 

We have Xi 0Pi Yi = Pi( {Xi, Yi}) - Pi( {Xi, Yi}) = Pi(Xi) U Pi(Yi), 
so since Zi E Xi 0pi Yi, one obtains ZiPiXi or ZiPiYi, whence zp*x or 
zp*y, that is z E p*(x) U p*(y). 

Therefore, x*y = {z I z E p*(x)Up*(y)} = XOp.y, that means 
the join spaces (H, *) and (H, ° p.) coincide. _ 

11.2) Direct products of join spaces associated with rough 
sets and inverse limit of an inverse family of join spaces 
associated with rough sets 

Let {< Hi, Pi > hEI be a family of models, where ViE I, Pi is an 
equivalence relation. 

54. Remark. The direct product P = II Pi of the family {PihEl is 
iEI 

an equivalence relation on H = II Hi. We recall that if X = (Xi)iEI 
iEI 

and Y = (Yi)iEI are in H, then xpy if and only if Vi E I, XiPiYi. 

Let us denote by" 0p" and by" 0Pi", where i E I, the hyperope­
rations induced by P, respectively, by Pi, defined as in (*), Theorem 
41, on the set H, respectively on the set Hi. 

55. Proposition. If {< Hi, 0Pi > hEl is a family of partial hyper­
groupoids (V i E I, Pi is an equivalence relation), such that at least 
one is a join space, then < H,op > is a join space. 

Proof. We shall verify that V X = (Xi)iEI E H, Ip(x)1 2:: 3. We have 
p(x) = {y E (Yi)iEl E H I Vi E I, XiPiYi}. Since 3io E I, such that 
<Hio , 0pio > is a join space, it follows that V Xio EHio , /Pio(Xio)l2:: 3, 
whence VXEH, Ip(x)l2:: 3, therefore <H,op> is a join space. _ 
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56. Proposition. If {< Hi, 0pi > hEI is a family of partial hyper­
groupoids (V i E I, Pi is an equivalence relation), such that there 
are io and jo in I, io -# jo, for which V Xio E Hio , IPio(Xio)1 ~ 2 and 
VXjo E Hjo ' Ipjo(xjo)1 ~ 2, then < H,op > is a join space. 

Proof. By hypothesis, for any x = (Xi)iEI, we have 

so < H,op > is a join space. • 
57. Proposition. Let {< Hi, 0Pi > hEI be a family of join spaces 
(V i E I, Pi is an equivalence relation, such that V Xi E H, IPi (Xi) I ~ 3) 
and let < H, ® > be the direct product of this family, that is 
VX=(Xi)iEI EH, Vy = (Yi)iEI EH we have x®y = (Xi 0Pi Yi)iEI. 
Then the join space < H, ® > is an enlargement of the join space 
< H,op >. 

Proof. For any X = (Xi)iEI and Y = (Yi)iEI elements of H, we have: 

X ® Y = (Xi 0Pi Yi)iEI = (Pi(Xi) U Pi(Yi))iEI. 

On the other hand, 

XOpy=p(X) U p(y) = {ZEH I Vi E I, Zi E Pi(Xi)}U 

U{ZEHIVi E I, Zi E Pi(Yi)} ~ (Pi(Xi)UPi(Yi))iEl=X®Y, 

that means that the join space < H, ® > is an enlargement of the 
join space < H,op > . • 

Let us study now the inverse limit of an inverse family of join 
spaces associated with rough sets. 

58. Proposition. Let {< Hi, Pi > hEI be an inverse family of mo­
dels, where ViE I, Pi is an equivalence relation, such that V Xi E Hi, 
IPi(Xi)1 ~ 3. Then the family {< H,OPi > hEI of join spaces, where 
"OPi " is defined as in (*), Theorem 41, on Hi, is an inverse family 
of join spaces. 
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Proof. The proof is similar to that one for direct families. _ 

Let {< Hi, 0pi > hEI be an inverse family of join spaces, where 
ViE I, the hyperoperation " ° Pi" is defined on Hi, as in (*), Theo­
rem 4l. 

We consider the following subset of the direct product 
H= TIHi : 

iEI 

If H i' 0, we define on H the hyperoperation: 

(3) x o fj=x0fjnH. 

59. Remark. If I has a maximum, then H i' 0 (see [235]). 

60. Definition. Let {< Hi,Oi > hEI be an inverse family of join 
spaces and let < H = TI Hi, 0 > be the direct product of this 

iEI 
family. Suppose H i' 0. Then < H, ° > is called the inverse limit 
of this inverse family of join spaces, where "0" is defined on H, as 
in (3). 

61. Theorem. Let {< Hi, 0pi > hEI be a family of join spaces 
(V i E I, Pi is an equivalence relation, and let's suppose that V Xi E Hi, 
IPi(Xi)1 ~ 3), such that (1,~) has a maximum s. Let < H,0 > be 
the direct product of this family. Then the hyperoperations "0" and 
"op " coincide, where P = TI Pi· 

iEI 

Proof. Let X and y be two arbitrary elements of H and let Z E x0y. 
It follows that Vi E I, we have Zi E Xi 0pi Yi = Pi(Xi) U Pi(Yi); 
particularly, Zs E Ps(xs)Ups(Ys). Suppose Zs E Ps(xs), that is ZsPsXs; 
hence, Vi E I, fsi(zs) = ziPdsi(Xs) = Xi, whence Z E p(x). It results 
Z E p(x)Up(y) = XOpY, so, x0y C XOpY and since XOpY C x0y, 
one obtains that the hyperoperations " op" and" 0" coincide. _ 
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62. Theorem. Let {< Hi, Pi> hEI be an inverse family of models, 
where Vi E 1, Pi is an equivalence relation, such that V Xi E Hi, 
IPi(Xi)I~3 and let {< Hi, 0Pi > }iEI be the associated inverse family 
of join spaces. 

If I has a maximum s, then the inverse limit of the inverse 
family of join spaces is a join space associated with a rough set. 

Proof. Let (H, 0) be the inverse limit of the inverse family of join 
spaces. 

Let P = II Pi and p=pnHxH. The relation pis an equivalence 
iEI 

relation on H. We shall verify that the hyperoperations "0" and 
"or/' coincide. 

Let x and y be two arbitrary elements of H. We have x 0p y = 
= p(x) U p(Y), because < H,op > is a join space, so V Z E H, 
Ip(z)1 ~ 3. So, 

xoy= x0ynH = xopynH = 

= (p(x) n H) U (p(Y) n H) = p(x) U p(Y). 

On the other hand, VUEH,p(u) = {VEH I vpu} = {vEH I 
Vi E I, ViPiUi}, where v = (Vi)iEI and u = (Ui)iEI. So, v E p(u) 
implies VsPsUs. Conversely, if VsPsUs, then Vi E I, fsi(Vs)pdsi(Us ) 

(because u and v are in H and ViE I, s ~ i), that means ViE I, 
ViPiUi, whence v E p(u). 

Therefore, v E p(u) if and only if Vs E Ps(us). Since Vus E Hs, 
IPs(us)I~3, it follows that VU E H, Ip(u)1 ~ 3, because for every 
Vs E Ps(us), there exists if = (fsi(Vs))iEI E p(u) and this correspon­
dence is injective. Hence, X0pY = p(x) U p(y) = x 0 y, therefore the 

join spaces < H, 0> and < H, 0-;; > coincide. _ 

§5. Hyperstructures and Factor Spaces 

Another application of hyperstructures, again in the setting of Fuzzy 
Set Theory and in particular of Decision Making is that one to Fac­
tor Spaces. 
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Factor Space Theory was introduced in 1981 by Pei-Zuang 
Wang. Hong Xing Li and Vincent C. Yen have applied Factor 
Spaces to Fuzzy Decision Making. Every Factor Space can be con­
sidered a generalization of the physical coordinate space. 

We have a universe U of objects, where lUI < Xo, for instance 
the universe of living beings, a set of concepts (as the concepts of 
being either a man, or a mammalian or an insect or a plant etc.) 
and a set of factors, that is a set of functions f : U -t X (J) from the 
universe U to X (J), the set of states of f, for instance the height 
which sets in correspondence with every object U the size of the 
height of u (when the height is definable for u, otherwise f(u) = (), 
where B is the empty state). So, every object u of the universe can 
be represented by the U(u)}fEF-ple, where its coordinates are the 
elements f(u) E X(J), for every factor f E F. 

A description frame is just a triple (U, C, F), where C is the 
set of concepts. Now, let us suppose that a concept 0: E C has as 
extension, not simply a crisp set (that is a subset of U), but a fuzzy 
subset A. 

If (U, C, F) is given and f E F is a factor, a hypergroupoid 
< U, 2> > can be associated as follows: 

x2>y = {a I A(a) E [ V A(z), V A(V)]}' 
f(z)=f(x) f(v)=f(y) 

Let "0" be the following hyperoperation defined on U: 

xoy = {AI A(A) E [A(x) , A(y)}. 

The following results have been obtained by P. Corsini. 

63. Theorem. < U; 2> > is a semi-hypergroup. 

Proof. Since U is finite, there is Xo E U such that V A(z) = 
f(z)=f(x) 

= A(xo), and there is Yo E U such that V A(v) = A(Yo), So 
f(v)=f(y) 

we have x2>y = Xo 0 Yo. 
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If t E U and V A(u) = A(to), we have clearly 
f(u)=f(t) 

(x 8 y) 8 t = (xo 0 Yo) 0 to = Xo 0 (Yo 0 to) = x 8 (y 8 t), 

whence < U; 0 > is a semi-hypergroup. 

Since U is finite, there is p E U such that 

A(p) = min{A(z) I z E U}. 

209 

• 

64. Theorem. Let us suppose r 1 f(p) c A-l(A(p». Then 
< U; 8> is a hypergroup. 

Proof. It is enough, by Theorem 63, to prove that < U; 8 > is a 
quasi-hypergroup. 

Let us prove, first, that for every a, bE U, if A(a) 2': V A(z), 
f(z)=f(b) 

then x exists such that a E b 8 x. 
It is enough to set x = a. Indeed, we have 

V A(z):s A(a) :S V A(v) 
f(z)=f(b) f(v)=f(a) 

whence 

A(a) E [ V A(z), V A(V)] 
f(z)=f(b) f(v)=f(x) 

therefore a E b 8 a = b 8 x. 
Let us suppose now A(a) :S V A(z). 

f(z)=f(b) 

Set y = p. Hence 

V A(v) = V A(v) :S V A(v) = A(p), 
f(v)=f(p) 

therefore 

V A(v) = A(p) :S A(a) :S V A(z), 
f(v)=f(y) f(z)=f(b) 

so it follows a E y 8 b = p 8 b. • 
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65. Corollary. With every factor f E F endowed with an exten­
sion satisfying the condition 

a join space < U; 0 > is associated. 

Proof. It follows straight off, from Theorem 64 and from Theorem 
4 [70j. • 

66. Theorem. Let < U; 0 > be a hypergroup. If x E p/U 
(see Definition 156 [437]), we have f- 1(f(x»cA- 1 A(p) whence 
f- 1 (f(p))CA-l«p}). 

Proof. V(a,b} E U2 , x exists such that a E xob. If A(a) :::; 
< V A(v), we have 

f(v)=f(b) 

V A(z):::; A(a) :::; V A(v). 
f(z)=f(x) f(v)=f(b) 

So, if we set a = p, it follows 

A(p) :::; V A(z):::; A(p), 
f(z)=f(x) 

whence V z E f-l(f(x» we have A(z) = A(p), therefore 

f-l(f(x» C A-1(A(p». 

Since qEU exists such that pEpoq, one obtains 

65. Corollary. < U; 0> is a join space if and only if 

• 

Proof. It follows straight off, from Theorem 66 and Corollary 65 .• 
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§6. Hypergroups induced by a fuzzy 
subset. Fuzzy hypergroups 

211 

R. Ameri and M.M. Zahedi have considered an interesting hyper­
structure (G,0l')' associated with a fuzzy subset /-l. Notice that /-l 
is a fuzzy subset on a group (G, .). They have proved that if /-l 
is subnormal, then the hyperstructure (G,0l') is a hypergroup and 
under suitable conditions, it is a join space. 

We mention here some of their results. 

68. Definition. Let (G,·) be a group and /-l a fuzzy subset on G. 
We say that /-l is a fuzzy subgroup on G if and only if : 

1) \:f (x, y) E G2 , /-l(xy) 2: min(/-l(x) , /-l(Y)); 

2) \:fxEG, /-l(x-1)=/-l(x). 

Let X i 0. Denote by FS(X) the set of all nonzero fuzzy 
subsets on X. From now on, we shall denote by e the identity of 
the group G. 

The concept of fuzzy subgroup was introduced by Rosenfeld 
[328]. Notice that if /-l E FS(G), then /-l is a fuzzy subgroup of G if 
and only if any nonempty set f-Lt = {x l/-l(x) 2: t} is a subgroup of 
G, where t E [0,1]. 

69. Definition. Let /-l E FS(G). We say that /-l is 

1) symmetric if \:f x E G, we have /-l(x) = /-l(x-1); 

2) invariant if\:f(x,y) E G2 , we have /-l(xy) = /-l(Yx); 

3) subnormal if it is both symmetric and invariant. 

70. Definition. Let /-l E FS(G) and x E G. The left fuzzy coset 
X/-l E FS(G) of /-l is defined by: 

\:f 9 E G, (X/-l)(g) = /-l(x-1g). 
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Similarly, the right fuzzy coset p,x E F S( G) of p, is defined by: 

v g E G, (p,x)(g) = p,(gx-1). 

71. Definition. Let (H, 0) be a hypergroup and p, a fuzzy subset 
onH. 

We say that p, is a fuzzy subhypergroup on G if the following 
conditions hold: 

1) V(x,y) E H2, inf p,{z) ~ inf{p,(x),p,(y)}; 
zExoy 

2) V(x,a) E H2, 3(y,z) E H2, such that x E aoy n zoa and 
inf{p,(y), p,(z)} ~ inf{p,(a), p,(x)}. 

The following result can be easily proved: 

72. Proposition. Let p, E FS(G) and (x,y,z) E G3. Then we 
have: 

1) xJ.t = yp, ~ zxJ.t = zyp,; 

2) xJ.t = yJ.t ~ xzJ.t = yzp" if P, is subnormal. 

Let us make the following notations: if J.t E F S( G) and (a, b) E G2 , 

then we denote aJ.t = {x E G I xp, = ap,}, p,a = {x E G I J.tX = J.ta}, 
ap,e = {ax I x E p,e} and J.ta p,b = {xy I x E J.ta, y E p,b}. If p, is 
invariant, then Va E G, we have a p, = p,a. 

Another result which can be easily proved is the following one: 

73. Proposition. Let J.t E FS{G) be subnormal. Then: 

1) V(x,y) E G2 , we have xp, = yp, ~ xy-l E p,e; 

2) p,e is a normal subgroup of G; 

3) Va E G, J.ta = aJ.te; 

4) V (a, b) E G2 , J.ta p,b = J.tab. 
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Now, let us consider on G the following hyperoperation: 

0/-1 : GxG -t P*(G), 0,.. «a, b» = J-LaJ-Lb 

So, "0,.." is the hyperoperation induced by J-L. 

74. Theorem. Let J-L E FS(G). 

1) Then (G,o,..) is a quasi-hypergroup. 

2) If J-L is subnormal, then (G,o,..) is a hypergroup. 

Proof. 1) We shall verify that Va E G, ao,..G = G = G 0/-1 a. Let 
bEG. We have b E a 0,.. (a-1b) n (ba-1)0,..a. Hence, (G,o,..) is a 
quasi-hypergroup. 

2) Let us check the associativity. Let (a, b, c) E G3 • Since J-L is 
subnormal, we have 

(ao,..b)o,..c= U J-LxJ-Lc= U J-Lxc=J-L(ab)c. 
xE,..o./-I~ xE"'o.~ 

We have used that x E J-Lab implies J-LX = J-Lab. 
Similarly, we obtain a 0,.. (b 0,.. c) = J-La(bc). 
Therefore, (a 0,.. b) 0,.. c = a 0,.. (b 0/-1 c). • 

75. Proposition. Let J-L E FS(G) be subnormal. Then (G,o,..) 
is a commutative hypergroup if and only if [G, G], the commutator 
subgroup of G, is included in J-Le. 

Proof. Let (a, b) E G2 • We have ao,..b = bo,..a ~ J-Lab = J-Lba ~ 
abJ-L = baJ-L ~ aba-1b-1 E J-Le, therefore (G, 0,..) is commutative if 
and only if [G, G] ~ J-Le. • 

76. Theorem. Let J-L E FS(G) be subnormal. Then (G'0/-l) is a 
quasi-canonical hypergroup. 

Moreover, there exists a good homomorphism from (G,·) to 
(G,o,..). 
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Proof. Let x E G. We have x E J.Lx = J.Lex = J.LeJ.Lx = e oJ.! x and, 
similarly, we have x E J.Lx = J.Lxe = X oJ.! e. 

Moreoyer, e E x oJ.! X-I n X-I oJ.! x. Now, let z E x oJ.! Y = J.LxY . 
It follows J.LZ = J.Lxy whence J.LX = J.Lzy-I, that is x E Z oJ.! y-l. On 
the other hand, J.Ly = J.LX- l z implies that y E X-I oJ.! z. Therefore, 
(G, oJ.!) is a quasi-canonical hypergroup. 

Let <p : G -+ P*(G), f(a) = J.La. We have 

f(ab) = J.Lab = U J.LxY = U x oJ.! y = J.La oJ.! l = f(a) oJ.! f(b). 

Hence, f is a good homomorphism. • 
77. Theorem. Let J.L E FS(G) be subnormal. Then (G, oJ.!) is a 
join space if and only if [G, G] ~ J.Le. 

Proof. ~" Let (a, b, c, d) E G4 . We have to verify only the impli­
cation: 

a/bnc/d -# 0 =} aOJ.!dn boJ.!c -# 0. 
If x E alb n c/d, then a E x oJ.! band c E x oJ.! d, whence J.La = J.Lxb 
and J.LC = J.Lxd. It results J.Lad = J.Lxbd and J.Lbc = J.Lbxd. Therefore, 
we have the equivalence relations: a oJ.! d n b oJ.! c -# 0 ¢=> J.Lad = 
J.Lbc ¢=> J.Lxbd = J.Lbxd {=::=:} (xbd)(bxd)-l E J.Le {=::=:} xbx-1b-1 E J.Le. 
So, if [G,G] C J.Le, then aOJ.!dnboJ.!c -# 0. Therefore, (G,0J.!) is a 
join space. 

"=}" Conversely, if (G, oJ.!) is a join space, then according to 
the previous calculations, 't/ (x, b) E G2, we have xbx-1b-1 E J.Le, 
whence [G, G] ~ J.Le. • 

In the following, we mention here some results on fuzzy hyper­
groups, obtained by P. Corsini and 1. Tofan. 

Let M be a nonempty set. An application 

0: MxM -+ P(M)* = P(M) - {0} = 

= {O, l}M - {O: M -+ {O, I} I 't/x EM, O(x) = O}, 

is called hyperoperation on M. 
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78. Definition. An application 

.: MxM -t F*(M)=[O, 1]M\{0:M -t [0, 1]1VXEM, O(X)=O} 

is called J-hyperoperation (fuzzy hyperoperation) on M. 
For any (a, b) E M2, H ~ M, H =I 0 and e E (0,1]' we denote: 

a tB b = {x E M I (a. b)(x) =I O}, 

a tB H = U a tB h, H tB a = U h EB a 
hEH hEH 

a 0 b = {x E M I (a. b)(x) = I}, 

a 0 H = U a 0 h, H ® a = U h ® a 
hEH hEH 

a.£b= {x E M I (a.b)(x) ~ e}, 

a .£ H = U a .£ h, H.£ a = U h .£ a. 
hEH hEH 

The following situations are possible: 

Rl) Va E M, a. M = XM = M. a, 
where XM : M --t [0,1] and V x E M, XM(X) = 1; 

R2) Va E M, a tB M = M = M tB a; 

R3) Va E M, a0M = M = M0a; 

R4) VeE (0,1]' Va E M, a.£ M = M = M.£ a. 

79. Definition. A nonempty set M, on which is defined a J­
hyperoperation • : MxM --t F*(M) which satisfy the associa­
tivity law and the reproductibility ~ is called a Ji-hypergroup (for 
i E {1,2,3,4}). 

80. Proposition. Let (M,O) be a hypergroup. If one defines 

• : MxM --t F*(M) 
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by a e b : M -----t [O,lJ : if x E aD b, (a e b)(x) = 1, if x rf. aD b, 
(a e b)(x) = 0, then one obtains a fi-hypergroup (i E {I, 2, 3, 4}). 

Proof. For any (a, b, c) E M 3 , we have 

[(aeb)ecJ(x)= sup {(h.c)(x)} = sup {(hec)(x)}, 
(aeb)(h);I=O hEaDb 

so if x E (aDb )Dc, [(a e b) e c](x )=1, if xrf.( aDb)Dc, [(a e b) e cJ (x )=0. 
Similarly, one obtains: if x E aD(bDc), [a e (b e c)](x) = 1, if 
x rf. aD (bDc), [a e (b. c)](x) = O. 

Therefore, the associativity of "e" holds. 
Moreover, we have: 

a®M= Ua®m= U{xl(a e m)(x)=l}= UaDm=M. 
mEM mEM mEM 

In a similar way, one proves: M = M ® a, then < M, e > is a h­
hypergroup. Similarly, we can verify the statement for the other 
hyperoperations. _ 

81. Proposition. If < M, e > is a fi-hypergroup (for an i E 

E {1,2,3,4}), then < M,tJJ > is a hypergroup. 

Proof. It is enough to prove the associativity of "tJJ" . 
For any (a, b, c) E M 3 , we have: 

(atJJb)tJJc= U ttJJc= U {xl (tec)(x)#O}= 
tEa$b (aeb)(t);I=O 

= {x I sup {(te c)(x) # O}} = {x I [(a e b) e c](x) # O} = 
(aeb)(t);I=O 

= {x I [ae(bec)J(x) # O} =atJJ (btJJc). 

-
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§7. Fuzzy subhypermodules over fuzzy 
hyperrings 

Let R be a commutative hyperring with identity, M an R-hyper­
module and L a completely distributive lattice. 

If X is a nonempty set, then we denote by F(X) the set of all 
fuzzy subsets of X, that is F(X) = {J.L I J.L : X --+ L is a function}. 

We present here some results, about fuzzy subhypermodules 
over fuzzy hyperrings, obtained by M.M. Zahedi and R. Ameri. 

82. Definition. Let J.L E F(R). We say that J.L is a fuzzy subhyper­
ring of R if the following conditions hold: 

(i) V (x, y) E R2, V z E x + y, J.L(z) ~ J.L(x) 1\ J.L(Y); 

(ii) Vx E R, J.L(-x) ~ J.L(x); 

(iii) V (x, y) E R2, J.L(xy) ~ J.L(x) 1\ J.L(Y). 

We denote by F R( R) the set of all fuzzy hyperrings of R. 

83. Theorem. Let J.L E F(R). then J.L is a fuzzy hyperring if and 
only if any non empty level subset J.La = {x E R I J.L( x) ~ (}'} is a 
subhyperring of R, where (}' E L. 

Proof. Let J.L E F R(R) and J.La be nonempty. Let x, y be in J.La and 
z E x - y. Since J.L(z) ~ J.L(x) /\ J.L(Y) ~ (}', it results Z E J.La, whence 
x - y ~ J.La. 

Similarly, from J.L(xy) ~ J.L(x) /\ J.L(Y) ~ (}', it follows xy E J.La· 
Therefore, J.La is a subhyperring of R. 

Conversely, let us suppose that any nonempty J.La is a subhy­
perring. For (x, y) E R2 and Z E x + y, set (}' = J.L(x) 1\ J.L(Y). Then 
x + Z ~ J.La. Hence, V Z E x + y, J.L(z) ~ J.L(x) 1\ J.L(Y). 

Similarly, we obtain J.L(xy) ~ J.L(x) 1\ J.L(Y). For x E R, set 
(}' = J.L(x). Then x E J.La, so -x E J.La, that is J.L(-x) ~ (}' = J.L(x). 

Therefore, J.L is a fuzzy subhyperring of R. • 
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84. Definition. Let V E F(R). We say that Vis a Juzzy hyperideal 
of R if it satisfies the following conditions: 

(i) V(x,Y)ER2 , VZEX+y, V(z) 2:: V(x)J\V(y); 

(ii) Vx E R, V(-x) 2:: V(x); 

(iii) V(xy) 2:: V(x) V V(y). 

We denote by FI(R) the set of all fuzzy hyperideals of R. 
The following theorem can be proved in a similar way as the 

above theorem. 

85. Theorem. Let V E F(R). Then V is a fuzzy hyperideal of R if 
and only if any nonempty V", = {x E R I V(x) 2:: a} is a hyperideal 
of R, where a E L. 

86. Definition. Let () E F(M) and V E FI(R). We say that () is a 
V-fuzzy subhypermodule of M if and only if the following conditions 
hold: 

1°) V(x,y) E M2, Vz E x+y, ()(z) 2:: ()(x) J\()(y); 

2°) Vx EM, Jl(-x) 2:: ()(x); 

3°) V x E M, Vr E R, ()(rx) 2:: V(r) J\ ()(x). 

We denote by Fm~(M) the set of all V-fuzzy subhypermodules 
ofM. 

87. Theorem. Let () E F(M) and V E FI(R). Then () E Fm~(R) 
if and only if any ()", = {x E M I ()(x) 2:: a} is a canonical hyper­
group of M, where a E L. Particularly, if V", is nonempty, then ()", 
is a V",-subhypermodule of M. 

Proof. Let any nORempty ()", be a subhypergroup of M. By 
Theorem 83, the conditions 1°) and 2°) are satisfied. Thus () is 
a subhypergroup of M. If V", is nonempty and x E ()"', rEV"" then 
()(rx)2::V(r) J\()(x)2::a. Hence () is a fuzzy subhypergroup of M. 
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Conversely, let () E Fm~(M) and ()a be nonempty, where 
Ct E L. By Theorem 83, it follows that ()a is a subhypergroup of 
M. Moreover, if Va is nonempty, then for x E ()a, r E Va, we 
have: O(rx) ;::: V(r) /\ ()(x) ;::: Ct. Hence rx E ()a. Therefore ()a is a 
Va-subhypermodule of M. 

88. Definition. Let a () be a nonconstant V-fuzzy subhypermo­
dule of M. We say that () is weakly fuzzy primary (prime) subhy­
permodule if ()( ra) > ()( a) implies that 3n ;::: 1, such that V x E M, 
()(rnx) ;::: ()(ra) (respectively, ()(rx) ;::: O(ra)). 

89. Proposition. Let N be a proper subhypermodule of M. Then 
XN is weakly fuzzy primary (prime) V-fuzzy subhypermodule of M 
if and only if N is a primary (prime) subhypermodule of M. 

Proof. Let N be a prime subhypermodule of M. Thus N =/: M 
and XN is nonconstant. Let a E M and r E R, be such that 
XN(ra) > XN(a). Then XN(ra) = 1 and XN(a) = 0. Hence, V x E M, 
XN(rnX) ;::: XN(ra). SO XN is weakly fuzzy prime. 

The proof is similar if N is primary. 
The converse is immediate. _ 

90. Theorem. Let () be a V-fuzzy subhypermodule of M, ()(O) = 
= V(O) = 1 and L = [0,1]. Then 0 is a weakly fuzzy primary 
(prime) subhypermodule if and only if every Ot is a primary (prime) 
Vt-subhypermodule of M, "It E [0,1]. 

Proof. Let () be a weakly fuzzy primary (prime) subhypermodule 
of M. Let r E Vt and a E M such that ra E ()t and a tt. ()t. Then 
()(ra) ;::: t and ()(a) < t. Since () is weakly fuzzy primary (prime), 
it follows that 3n ;::: 1, such that "Ix E M, ()(rnx) ;::: O(ra) 2: t 
(respectively, V x E M, ()(rx) ;::: O(ra) 2: t). 

Conversely, suppose that ()t is primary (prime) Vc~mbhyper­
module, "It E [0,1]. Let r E R and a E M, such that ()(ra»()(a). 
Set t=()(ra). Thus ra E ()t, but a tt. Ot. Since ()t is primry (prime), 
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it follows that 3n 2: 1 such that V x E M, B(rnx) > t = B(ra) 
(respectively, V x E M, B(rx) 2: t = B(ra». 

Therefore, B is weakly V-fuzzy primary (prime). 

§8. On Chinese hyperstructures 

Some Chinese mathematicians (see for instance [244}, [435]) have 
developed an interesting theory of the groups which have as sup­
ports, subsets of the set of non empty subsets of a group G. These 
Chinese structures have been derived from the fuzzy subset theory. 

In this paragraph another connection between these groups 
(called H X -groups) and hyperstructures is established and ana­
lyzed. From every H X -group a hypergroupoid is obtained (by P. 
Corsini) which is always a Hv-group and in some case, a join space. 
Another connection had already been emphasized in [70]. 

Let us remind some definitions. 

I. An Hv-group is a hypergroupoid < H; 0> such that 

a) V (a, x, y) E H3, (xoy)oz n xo(yoz) =f. 0 

b) it is a quasi-hypergroup, that is 
Va E H2, aoH = HoH = H. 

II. An Hb-grouP is an Hv-group < H; 0 > such that there is a 
group operation < . > so that V (x, y) E H2, we have 

x· Y E xoy. 

III. Let < G;· > be a group and P*(G) the set of non empty 
subsets of G. An H X -group is a non empty subset H of 
P*( G) which is a group with respect to the operation: 

V(A,B) E P*(G) x P*(G), A· B = {xy I x E A, y E B}. 
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91. Definition. Let 9 be an H X -group with G as support and 
E as identity. We call Chinese hypergroupoid the hyperstructure 
< G*;o >, where G* UA, and V(x,y) E G*xG*, xoy = 

U A·B. 
A3o:.B3y 
{A.B}CQ 

AEg 

Set Vx E G*, a(x) = {A I A E g, A 3 x} and A(x) = U A. 
AEa(x) 

92. Lemma. V(x,y) E G* x G*, we have 

xoy = A(x)· A(y). 

Proof. Indeed, if z E x 0 y, then A, B exist in 9 such that z EA· B, 
A 3 x, B 3 y. We clearly have A C A(x), B C A(y) whence 
xoy C A(x) ·A(y). 

On the converse, set w E A(x) . A(y). Then A, B exist in 9 
such that w EA· B, A 3 x, B 3 Y whence A(x) ·A(y) C xoy .• 

93. Theorem. The hypergroupoid < G*; 0 > is an Hv-group. 
Moreover, it is clearly an Hb-grouP [440j. 

Proof. Let us see first that it is a quasi-hypergroup. Indeed, 
V (a, b) E G*2, V (A, B) E 9 x 9 such that A 3 a, B 3 b, there exists 
X E 9 such that A = B . X; follows a E B . X. Therefore V x EX, 
we have a E box. 

By the same way we find y E 9 such that y E Y. We have 
a E y ob. 

Let us prove now that < G*; 0> satisfies the condition 

(xoy) 0 z n xo (yo z):;f0. 
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V(x,y,z) E G*3, we have 

(xoy)oz = (A (x) . A(y))oz = 

V (AI, A2, A3) E g3 such that Al 3 x, A2 3 y, A3 3 z 

xo (yoz) = u 
for V (AI, A2, A3) E g3 such that Al 3 x, A2 3 y, A3 3 z. 

Therefore < G*; 0 > is an Hv-group. _ 

94. Proposition. If g is an H X -group such that 

then < G*; 0 > is a hypergroup. 

Proof. It is enough to remark the condition (1) implies V x E G*, 
Jet(x)J = l. 

So < 0 > is associative. 
Therefore, since < G*; 0 > is a quasi-hypergroup, it is a hyper-

group. _ 

95. Proposition. Let g be an HX-group, then < G*; 0 > is a 
regular reversible Hv-group, moreover it is feebly quasi-canonical. 

Proof. Indeed, Vp E E, Vx E G*, we have 

xop = A(x)· A(p) :::) A(x)· E:::) A(x) 3 x. 
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Moreover, Vx E C*, Vy E A-I for x E A E g we have 

xoy J A(x) ·A-1 => A ·A-1 = E. 

Finally, if a E bo e = A(b) . A(e) then 3b' E U B, 3e' E U C 
BEo(b) CEo(c) 

such that a = b'e'. Follows 3A E a(a), 3B' E a(b), 3C' E a(a) such 
that A = B'C'; follows B' = AC'-1 where C'C'-1 = C-1C = E. 

Hence b' E A(a)· A(e"), Ve" E C'-1 from which b E aoe" and 
e" E iCe). • 

96. Proposition. Let g be an abelian H X -group such that the 
condition (1) is satisfied. Then < C*; 0 > is a join spaee and a 
feebly quasi-canonical hypergroup. 

Proof. We shall denote the operation of C by "+" . 
Set x E a/bne/d, then x E C* exists such that a E xob = x+B 

where a(b) = {B}, a(x) = {X} and e E xod = X + D, where 
a(d) = {D}. Then if a(a) = {A}, aCe) = {C}, we have A = X +B, 
C = X + D, whence D = -X + C. Follows 

A + D = X + B + (-X) + C = B + C + X + (-X) = 
= B+C+E= B+C. 

< C*; 0 > is feebly canonical by Proposition 4. • 
97. Proposition. Let < C;:; 01 > and < C;; 02 > be Chinese 
hypergroupoids. Then the cartesian product < Ci xC;; 0> with a 
product defined 

is again a Chinese hypergroupoid. 
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Proof. Indeed, 

U (AI, A2) 0 (Bl' B2) = (Xl, X2) 0 (YI, Y2) 
't i, AiEO:(Xi), BiEO:(Yi) 

where < 0 > is the hyperoperation corresponding to the structure 
of HX-group in GI x G2 defined by g = {(A I ,A2 ) I A E gil. • 

§8. Hyperstructures associated 
with ordered sets 

In this paragraph some new hyperoperations are introduced in a 
different context and analyzed. The setting is as follows. In the 
place of the membership function f-L : U -t [0, 1 J, we have a function 
A from a finite universe H to a totally ordered set < V; ~>. 

We shall suppose in the following U to be a non empty finite 
set, A to be a function from U to a totally orderd set < V, ~>. We 
shall denote, for V (x, y) E U2 

A(x) V A(y) the maximum between A(x) and A(y), and 
A(x) /\ A(y) the minimum between A(x) and A(Y). 

These results have been obtained by P. Corsini. 
We consider the following hyperoperations 'rJI, ... , 'rJ4 and we 

shall analyze their properties. 
Let be V (a, b) E U2 

< - - -
'rJI) ae b = {x E U I A(x) ~ A(a) V A(b)} 

'rJ2) ae b = {y E U I A(y) 2: A(a) V A(b)} 
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98. Theorem. 

1) The hypergroupoids f]l), f]2), f]3), f]4) are associative. 

2) f]l), f]2), f]3), f]4) are endowed with identities. 

3) f]l), f]4) are hypergroups. 

Proof. 1) We can remark that \:.f (a, b, c) E U3 we have 

(a ab) ae = {x E U I A(x) :<:; A(a) V A(b) V A(e)} = 
v v 

< < =ao(boe) 
v v 

(abb) be = {y E U I A(y) ~ A(a) V A(b) V A(e)} = 
v v 

> > =ao(boc) 
v v 

(a bb) be = {z E U I A(z) ~ A(a) 1\ A(b) 1\ A(c)} = 
1\ 1\ 

> > =ao(boe) 
1\ 1\ 

(aab) ae = {u E U I A(u) :<:; A(a) 1\ A(b) 1\ A(e)} = 
1\ 1\ 

2) Set 

< < =ao(boe) 
1\ 1\ 

Xo : A(xo) = min{A(x) I x E U} 

Xl : A(Xl) = max{A(x) I x E U} 

225 

< We have clearly that Xo is an identity for both < U; e > and 
> < U; 0 >. 
V 

Xl is an identity for both < U; a > and < U; b >. 
1\ 1\ 

3) \:.f(a, b) E U we have a E aab and a E abb. v 1\ • 
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99. Theorem. 

1) U coincides with the set of identities of < U; a > and v 
> < U; 0 >. 
/\ 

2) The set of identities of < U; ~ > is A-I A(xo). 
v 

The set of identities of < U; a > is A-I A(XI). 
. /\ 

3) < U; a > and < U; ~ > are regular reversible hypergroups. v /\ 

> < 4) < U; 0 > and < U; 0 > are not hypergroups. 
v /\ 

Proof. 1) Indeed V x E U, VuE U, we have 

A(x) ::; A(x) V A(u), A(x) ~ A(x) 1\ A(u) 

< > whence x E x 0 u, x E x 0 u. 
V /\ 

2) Set z E A(xo), v E A(XI), x E U. Then 

- - - > A(x) = A(x) V A(z) whence x E x 0 z 
v 

- - - < A(x) = A(x) 1\ A(v) whence x E x ov. 
/\ 

On the other hand, if y tJ. A(xo) we have 

> 
Xo tJ. Xo 0 y v 

It follows that y is not an identity for 'TJ2). Hence A-IA(xo) 
= E~ = the set of identities of 'TJ2). By a similar proof one sees that 
A-I A(XI) = Ei. 

3) It follows from 1). 
> < 4) < U; 0 >, < U; 0 > are not hypergroups. v /\ 

Indeed, if A(b) < A( a), x does not exist such that b E a ~ x that is v 
A(b) ~ A(a) V A(x). Similarly, if A(b»A(a), y does not exist such 

that A(b)::;A(a) 1\ A(y), that is aEb ~y. • 
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100. Definition. 

1. We call quasi-join space a commutative semi-hypergroup which 
satisfies the condition 

j) alb n cld =1= 0 ===? aod n boc =1= 0. 

II. We call semi-join space a semi-hypergroup which satisfies the 
condition (j). 

101. Theorem. < U; ~ >, < U; 6 > are join spaces, < U; 6 >, 
V /\ V 

< U; ~ > are semi-join spaces. 
/\ 

Proof. Set V (a, b) E U2 

a /\ b = a if and only if A(a) :::; A(b) 

a /\ b = b if and only if A(b) :::; A(a) 

a V b = a if and only if A(a) ~ A(b) 

a V b = b if and only if A(b) ~ A(a) 

Follows A(a /\ b) = A(a) /\ A(b), A(a V b) = A(a) V A(b). 

6"1) Set (a, b, c, d) E U4 , y = a /\ c. We have 

y ::; a ::; a V d whence 

y :::; c::; b V c whence 

< < So a 0 d n b 0 c =1= 0. 
v v 

< Y E aod v 
< y E boc 
v 

Hence < U; ~ > by 3) Theorem 98 is a join space. v 

E"4) By a similar proof one sees that 

> > a V c E a 0 d n b 0 c. 
/\ /\ 

So, by 3) Theorem 98 < U; 6 > is a join space. 
/\ 
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C2) Set x E a/b n c/d. Then 

a E b ex = {z I A(z) ~ A(b) v A(x)} and 

c E dex = {z I A(z) ~ A(d) V A(x)} 

Follows 

A(a V c) = A(a) V A(c) ~ A(b) V A(d) V A(x) ~ A(b) V A(d). 

Hence 

A(a V c) ~ A(a) V A(d) 

A(a V c) ~ A(b) V A(c) 

whence 

whence 

> aVcEaod 
v 

a VeE b6c. 
v 

Therefore < U; 6 >, by Theorem 98 is a quasi-join space. 
v 

C3) By a similar proof one sees that if in < U; a >, a/b n c/d=l0 
1\ 

then a 1\ c E a ad n b a c =I 0. Therefore < U; a > is by 
1\ 1\ 1\ 

Theorem 98 a semi-join space. _ 



Chapter 6 

Automata 

The definition of an automaton, we shall present here, 
has its origins in a paper of Kleene (1956). The title" Re­
presentation of events in nerve sets and finite automata" of 
Kleene's paper gives an idea of its motivation. 

The concept of automaton had led to important results, 
both in mathematics and in theoretical computer science. 

Automata are in fact very familiar objects, in the shape 
of coin machines. 

The last twenty years have developed a body of research 
known under the names of Automaton Theory and Formal 
Language Theory 

We mention Biology between the fields which have sig­
nificant connections with Automaton Theory 

Here, we have presented the connections of Automaton 
Theory and Language Theory with another field, known as 
Hyperstructure Theory. 

Using tools and methods of Hyper structure Theory, G.G. 
Massouros gave a new proof of the famous Kleene's Theo­
rem, which states that: 

"A subset of the set of words M* is acceptable 
from an automaton M if and only if it is defined 
by a regular expression." 

229 
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As follows, an association is attempted between Automaton 
and Language Theory and Hyperstructure Theory. 

In the following sections, we shall present some important re­
suIts on these topics, obtained by G. G. Massouros and by G. G. 
Massouros & J. Mittas (see §l, §2) and then by J. Chvalina & L. 
Chvalinova (see §3). 

§1. Language theory and hyperstructures 

Let M be an alphabet, M* the set of words defined over M (M* 
is the closure of M), A the empty word. The set M* endowed with 
the operation of concatenation of the words, that is x . y = xy, is 
a monoid, with neutral element the empty word. 

The length R( x) of a word x E M* is the number of its letters, 
so R(A) = 0 and V(x,y) E M*xM*, R(xy) = R(x) +R(y). 

Let us define on M* the following hyperoperation: 

V(x,y) E M*xM*, x + y = {x,y}. 

1. Proposition. < M*, + > is a join space. 

Proof. Indeed, < M*, + > is a commutative hypergroup and 
moreover V(x,y) E M*xM*, we have 

/ { M * I } {x' if x =I- y x y = z E x E Y + Z = M*, if x = y , 

whence it is clear that V (x, y, z, w) E M*4, the following impli­
cation holds: 

x/y n z/w =I- 0 ===> x + w n y + z =I- 0. 

• 
2. Definition. A hyperringoid is a structure < H, +,. >, where 
< H, + > is a join space, < H, . > is a semigroup and the multipli­
cation "." is bilaterally distributive with respect to the hyperope­
ration "+". 
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3. Remark. < M*, +, . > is a unitary hyperringoid. 
Indeed, < M*, + > is a join space, < M*,' > is a monoid 

and the concatenation is bilaterally distributive with respect to the 
addition. 

Let us consider now the following binary relation L on M*: 

xLV ~ f(x) = f(y). 

This is an equivalence, called length equivalence. 
It is possible to verify the following: 

4. Proposition. 

(i) < M* / L, EB > is a join space, where 
V(x,fj) E (M*/L)2, xEBY={x,y}. 

(ii) < M* / L, EB, 0 > is a unitary hyperringoid, where V (x, y) E 
(M* / L )2, X 0 Y = xy and the multiplicatively neutral element 
isX={A}. 

(iii) If we setV(x,y) E M*2, xEBy = xUy, then < M*, EB > is a 
join space. 

(iv) < M*, EB,' > is a unitary hyperringoid, where "." is the con­
catenation and the multiplicatively neutral element is A. 

5. Definition. A join space < H, + > is called fortified join space 
if the following conditions hold: 

(i) there is a unique neutral element denoted by 0 (the zero of 
H), that is 30 E H, such that V x E H, x E 0 + x; 

(ii) every element x of H has exactly one inverse -x, that is 
V x E H, 3! - x E H, such that 0 E x + (-x) = x - x; 

(iii) the hypergroup < H, + > is partially reversible, that is: 
V (x, y, z) E H 3 , if Z E x+ y, then either y E z - x or x E z - y. 
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6. Definition. Let < H, + > be a join space. If the following 
axioms are satisfied: 

(i) there exists a unique neutral element 0, such that every non­
zero element x of H has a nonempty set i(x) of nonzero in­
verses of x in H (with respect to 0); 

(ii) the hypergroup < H, + > is partially reversible, that is: 
a E x+y ==} (3x' E i(x), y E a+x' or 3y' E iCy), x E a+y') 

then < H, + > is called polysymmetrical fortified join space. 

7. Definition. A hyperringoid (H, +, .) is called fortified if its 
additive structure is fortified and its zero element is a bilaterally 
absorbing element for the multiplication, that is 

"Ix E H, Ox = xO = O. 

Let us adjoin to the set M* an element 0, considering it as a 
zero element, with the properties: 

v x, Ox = xO = 0, 0 + x = {O, x}, x + x = {O, x}. 

Let M = M* U {O}. We obtain the following 

8. Proposition. < M, +,. > is a fortified unitary hyperringoid. 

We notice that if the length R(O) of the zero word were the 
natural number 0, then the length equivalence in M would not be 
compatible with respect to the multiplication. Indeed, V x E M, 
since 6 = {O, -X}, we would have 6· x = Ox = '>:x, so 6 = -X~x, which 
is absurd (where V x E M, x, is the equivalence class of x). 

But, we can define the order of a word x (ord x) on M in the 
following manner: 

"Ix E M*, ordx = R(x) + 1 and ordO = o. 
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Let '" be the following relation on M: 

X rv y ~ ordx = ordy. 

"rv" is an equivalence relation, which is called order equivalence. 
Its restriction on M* coincides with the length equivalence on M*. 
Similarly as in Proposition 4, we can define E9 and 0 on M / rv • The 
relation" rv" is compatible with respect to both the hyperoperation 
and the operation of < M, E9, 0 >. Thus we have the 

9. Proposition. < M / "', E9, 0 > is a unitary fortified hyper­
ringoid. 

§2. Automata and hyperstructures 

10. Definition. An automaton is a 5-tuple (8, M, 80 , F, t), where 
S is a finite set of states, M is an alphabet of input letters, 80 and 
F are the set of the start and final states, respectively and t is a 
state transition function. 

If the automaton is deterministic, then t has the domain 8 x M 
and range 8. If the automaton is nondeterministic, then t has the 
domain SxM and range P(8). 

We shall define on 8 several hyperoperations, such that we 
obtain hypergroup structures on S. 

I. The attached order hypergroup 

We suppose that there exists a conventional start state 80', so 
that every state 8 E 8 is connected to 80' (see Definition 14). 

11. Definition. The order of a state 8 E 8 is the natural number 
.e + 1, where .e is the minimum of the lengths of words which lead 
from the conventional start state so' to 8. 

We denote the order of 8 by ord 8. 
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We define ord 80' = o. 
Let us define now on 8 the following order equivalence: 

if (811 82) E 82, 81 rv 82 <===? ord 81 = ord 82. 
For any 8 E 8, let s = {8' E 8 I 8 rv 8'}. 

Let us consider the following commutative hyperoperations 
on 8: 

1 
82, 

10 \1(81182) E 82,81 +82 = U 
ords<ords1 

8~, 

U 
ords<ords1 

if ord 81 < ord 82 

s, if ord81 = ord82::/= 0 

if ord 81 < ord 82 

s, if ord 81 = ord 82 and 

80' ::/= 81 ::/= 82 ::/= 80' 

U s, if 81 = 82· 
ords::;ords1 

U S, 
Olord s::;ord Sl 

U S, 
ords::;ord s 1 

if 0::/= ord 81 < ord 82 

if ord 81 = ord 82 and 

80' ::/= 81 ::/= 82 ::/= 80' 

In each case, < 8, + > is a canonical hypergroup. 

II. The attached grade hypergroup 

Let (8, M, 80, F, t) be a deterministic automaton. 
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12. Definition. We call grade of a state s E S and we denote it by 
grad s, the set {x E M* I t*(s,x) E F}, where t*: SxM* ---t S is 
the extended state transition function, which is defined recursively 
as follows: 

Vs E S, Va E M, t*(s,a) = t(s,a); 

Vs E S, t*(s,.x) = s; 

VsES, VxEM*, VaEM, t*(s,ax)=t*(t(s,a),x). 

We define the relation R on the set of states S, as follows: 

This relation is an equivalence relation on S, called grade equi­
valence. 

Let us denote by 81 the equivalence class of 81, with respect to 
R. 

Let us define on S the following hyperoperation 

Then (S, +) is a join space. 

Now, let us suppose that the automaton (S, M, So, F, t) has 
only one final state, the state ST, otherwise we endow it with a 
conventional one. 

We define on S the following hyperoperation "+": 

Then < S, + > is a polysymmetrical fortified join space, called the 
attached grade hypergroup of the automaton. 

13. Remark. If in a polysymmetrical fortified join space H, the 
family {S(x )}XEH forms a partition of H, then the relation p defined 
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by: xpy ¢=:::;> 8(x) = 8(y) is an equivalence relation on H and the 
factor set H / p, endowed with the hyperoperation 

becomes a fortified join space. 
The grade notion is very important for the creation of the mini­

mum automaton which accepts the same language as the initial one. 
If in an automaton there exist two states of the same grade, then 
it makes no difference, for the process of reaching the final state, 
whether we are on one or on the other. By Remark 13, if the at­
tached grade hypergroup is polysymmetrical, then we can construct 
a fortified join space and so, its corresponding automaton has less 
states than the original one, but it accepts exactly the same lan­
guage as it. 

III. The attached hypergroup of the paths 

14. Definition. The state S2 of 8 will be called connected to the 
state Sl of 8 if there exists x E M*, such that S2 = t* (Sl' x). 

If x consists only in one letter, then the state S2 is called suc­
cessive to Sl. 

Notice that if S2 is connected (successive) to S1, this does not 
imply that Sl is connected (succesive) to S2. 

We define the following hyperoperation on the set of states 8: 

'vi (Xl, X2) E 8 2 , 

{ 
{s E 8 13(x,y) E M*2 such that s =t*(SI,x) and 

S10S2 = S2 = t* (s, y)}, if S2 is connected to Sl 

{ SI, S2}, if S2 is not connected to Sl. 

Then (8,0) is a non-commutative hypergroup. 
Using this hypergroup, an important theorem of Languages 

and Automaton Theory can be proved by tools and methods of 
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Hypercompositional Structure Theory: the Theorem of Kleene (see 
[258]). 

IV. The attached hypergroup of the operation 

Now, we shall point out that an automaton can be in a certain state 
in a certain moment (clock pulse). In other words, we consider 
"time" as one of the factors that are involved. 

Therefore, it is convenient to consider the cartesian product 
8xlN (8 being the set of states). 

If the automaton is in the state S during the clock pulse t, we 
write (s, t). 

15. Definition. An element (s, t) of 8xlN is called activated if 
after t clock pulses, the automaton can be found in the state s. 
We say that (S2' r) is succesive to (Sb t) if S2 is succesive to Sl and 
r=t+l. 

We say that (S2' r) is connected to (Sb t) if S2 is connected to 
Sl and t < r. 

Let A ~ 8 x IN be the set of activated elements and tA * the 
generalization of the extended state transition function t*, that is 
tA* : (8xlN)xM* --+ 8xlN, tA*((s, t), x) = (t*(s, x), t + Ix!), 
where Ixl is the length of the word x. We define on A the following 
hyperoperation: 

{tA*((Sbm),X) I x E Prefixr and 
tA*((Sl' m), r) = (S2' n)}, 
if (s2,n) is connected 
to (Sbm) 

{(Sl' m), (S2' n)} otherwise. 

16. Proposition. (A, 0) is a non commutative hypergroup. 
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Proof. "0" is associative. Indeed, if (sj,n) is connected to (si,m) 
and if (Sk'P) is connected to (Sj, n), then we have: 

((Si,m)O(Sj,n»O(Sk'P) = 
= {tA*((Si' m), x) I xEPrefixr, tA*((si, m), r)=(sj, n)}o(sk'P)= 

= {tA*(tA*((Si' m), x), y) I x E Prefixr, tA*((Si' m), r) = (Sj, n), 

y E Prefixq, tA*(tA*((Si' m), x), q) = (Sk'P)} = 

= {tA*((Si,m),v) I v E Prefixw,tA*((si,m),w) = (Sk'P)}· 

On the other hand, 

(Si' m)o((sj, n)o(sk'P» = 

= (Si' m)o{tA*((sj, n), x) I xEPrefixr, tA*((sj, n), r)=(sk'P)}= 

= {tA*((Si' m), z) I Z E Prefixu, tA*((Si' m), u) = (Pk,P) or 

tA*((si, m), u) = tA*((sj, n), x), x E Prefixr, tA*((sj, n), r) = 

= (sk,p)={tA*((Si' m), v) I vE Prefixw, tA*((Si' m), W)=(Sk'P)}· 

Now, suppose that (Sj, n) and (Sk'p) are connected to (Si' m), 
and (Sk'p) is not connected to (sj,n). 

Then 

((Si' m)o(sj, n»o(sk,p) = 
= {tA*((si, m), x) I xE Prefixr, tA*((Si' m), r)=(sj, n)}o(sk'p)= 

= ((Si' m)o(sj, n»U((si' m)o(sk'p» and 

(si,m)o((sj,n)o(sk'P» = 
= (Si' m)o{(sj, n), (Sk'P)} = ((Si' m)o(sj, n»U((si' m)o(sk'p». 

Let us suppose that (Sj, n) is connected to (Si' m) and (Sk'P) 
is not connected to anyone of the other two. 

Then 

((Si' m)o(sj, n»o(sbP) = 

= {tA*((Si' m), x) I x E Prefix r, tA*((Si' m), r)=(sj, n)}o(sk'P). 
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The element (Sk,p) is not connected to anyone of tA*«Si, m), x), 
otherwise it would result that (Sk'p) is connected to (Si, m), which 
is absurd. 

Therefore 

«Si,m)O(Sj,n))O(Sk,p) = 

={tA*«Si, m), x) I xE Prefixr, tA*«Si, m), r)=(sj, n)} U {(Sk'P)}. 

On the other hand, 

(Si, m)o«sj, n)o(sk,P)) = (Si' m)o{(sj, n), (Sk,P)} = 

= «Si' m)o(sj, n))U«si' m)o(sk,p)) = 

= {tA*«Si, m), x) I xEPrefixr, tA*«Si' m), r)=(sj, n)}U{(sk'p)}, 

If the elements (Si, m), (Sj, n) and (Sk'p) are not connected, 
then 

«Si' m)o(sj, n))o(sk'P) = {(Si' m), (Sj, n)}o(sk'P) = 

= «Si' m)o(sk'P)) U «sj,n)o(sk'P)) = {(Si' m), (Sj, n), (Sk,P)} 

and similarly we obtain 

Therefore" 0" is associative. 
Moreover,V(s;,m) E A, we have 

Notice that" 0" is not commutative. • 
Using this hypergroup, all the states at which the automaton 

can possibly be found, at a given moment t, may be effectively 
determined. 
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§3. Automata and quasi-order 
hypergroups 

In the following, some basic properties of automata are described, 
using their corresponding hyperstructures. 

From now on, we shall denote an automaton by a triplet 
(3, M, r), where 3 is the set of states, M the alphabet (M i- 0) 
and r = t* : 3xM* --+ 3 is the extended state transition func­
tion, satisfying the two conditions: r(s,'x) = s, V s E 3 and 
r(s, ab) = r(r(s, a), b), V s E 3, V (a, b) E M*2. 

A sub automaton of the automaton (3, M, r) is an automaton 
(30 , M, ro), where 30 ~ 3; ro is the restriction of ron 30 xM* and 
Vso E 30 , Va E M*, r(so,a) E 30 . 

If 31 ~ 3, let us denote: 

and r( Sl, M*) instead of r( {sd, M*). 
We shall consider only the automata with nonempty state sets. 

17. Definition. A nonempty subautomaton (30 , M, r) of an au­
tomaton (3, M, r) is called separated if r(3 - 30 , M*) n 30 = 0. 
An automaton, with no separated proper sub automaton is called 
connected. An automaton (3, M, r) is called strongly connected if 
V(s,t) E 3 2,:3a E M*, such that r(s,a) = t. 

18. Definition. An automaton (3, M, r) is called retrievable if 
Vs E 3, Va E M*,:3b E M*, such that r(s,ab) = s. 

It holds the following result: 

19. Theorem. An automaton is retrievable if and only if it is a 
union of its strongly connected subautomata. ([17]). 

With any automaton (3, M, r) , we can associate a quasi­
order hypergroup (3,0) (that is V(8,t) E 32 , we have 8 E S2=83 
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and sot=S2 U e) in the following manner: 

sot = T(S, M*) U T(t, M*). 

Indeed, V(s,t) E 3 2 , {s,t} C sot, so sot f= 0. 
Moreover, sot = S2 U e, since S2 =T(S, M*). We also have: 

S3 = U sou = T(s,M*) U U T(u,M*) = 
UET(S,M*) UET(S,M*) 

= S2 U {T(T(s,al),a2) I (al,a2) E M*2} = 

= S2 U {T(S, aIa2) I aIa2 E M*} = S2 U T(S, M*) = S2 U S2 = S2. 

Notice that V (s, t) E 3 2 , we have 

sot = pes) U p(t) , where 15 c 3 2 

is defined as follows: 

15 is the transitive closure of p, where p C 3 2 and 
spt ~ 3a EM: T(s,a) = t. 

20. Definition. A quasi-order hypergroup < H,o > is called an 
order hypergroup if V ( a, b) E H2, the following implication holds: 

21. Definition. A commutative hypergroup < H, 0 > is called 
inner irreducible if for every subhypergroups HI and H2 of H, such 
that H = H IoH2, we have HI n H2 f= 0. 

Now, let us see some relationships between some properties of 
automata and of their corresponding hypergroups. 

22. Theorem. 

1) An automaton (3, M, T) is connected if and only if its state 
hypergroup (3,0) is inner irreducible. 
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2) An automaton (8, M, r) is strongly connected if and only if its 
state hypergroup (8, 0) satisfies the condition V s E 8, 8 = S2. 

3) An automaton (8, M, r) is retrievable if and only if for any 
inner irreducible subhypergroup (K, 0) of the state hypergroup 
(8,0), there exists k E K, such that K = k2. 

Proof. 1) "===}-" Let us consider (8,M,r) a connected automaton 
and 8J, S2 subhypergroups of (8, 0), such that 8 = 81°82 . 

We have 'v'SlE'SJ, 'v'aEM*, r(sl,a)Er(sl,M*) = S10Sl C 81, 
so (81,M, r1) is asubautomaton of (8, M, r), wherer1 = r/81xM*' 
Since (S, M, r) is connected, it follows r(8 - 8J, M*) n 81 i- 0, 
whence 3(t1, t2) E (8 - 81)x8J, 3a E M*, such that r(tJ, a) = t2 E 
E r(tbM*) = t10t1. Since 8 = 81082 it follows that 3(u,v) E 
E 81xS2, such that t1 E UOV = r(u, M*) U r(v, M*). 

We have r(u,M*) = uou C 8 b r(v,M*) = vov C 82 and 
t1 E 8 - 8J, so t1 E vov, hence t2 E t 10t1 ~ (vov)o(vov) = v30v = 
= v2 C S2. Then t2 E 81 n 8 2 , that is 81 n 8 2 i- 0, and so it follows 
that the state hypergroup (8, 0) is inner irreducible. 

"¢=" Now, let (8,0) be an inner irreducible hypergroup and 
suppose that the automaton (8, M, r) is disconnected. Then there 
exists a separated proper subautomaton (8, M, r1) of (8, M, r), that 
means 

that is (8 - 8 b 0) is a subhypergroup of (8,0). 
Since r1 (81, M*) ~ 81, it follows that (81, 0) is also a subhyper­

group of (8,0). 
Moreover, since V s E 8, r(s, >.) = s it follows that r(8l, M*) = 

= 81 and r(8 - 81,M*) = 8 - 81. We have (8 - 81)081 ~ 8. On 
the other hand, if s E 8 - 81, then we consider an arbitrary element 
t of 81 and, if s E 8J, we consider an arbitrary t in 8 - 81, We have 

s E r(s, M*) U r(t, M*) = sot = tos C (8 - 81)°81, 
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Therefore B = (B - B1)oB}, which is a contradiction with the 
fact that (B, 0) is inner irreducible. 

2) "==>" Suppose that the automaton (B, M, T) is strongly con­
nected. Let s E B. We have sos C B and "It E 8, 3a E M*, such 
that t = res, a) E res, M*) = sos, so 8 ~ sos, whence B = S2. 

"{=:=" Conversely, for any s E B, we have 8 = S2 = r(s,M*) 
and so "It E B, 3a E M* such that t = res, a), whence (8, M, r) is 
a strongly connected automaton. 

3) "==>" Let (B,M,r) be a retrievable automaton. It means 
that (B, M, r) is a union of its strongly connected subautomata 
(Bi, M, ri), i E I, where BinBj = 0 for (i,j) E 12 , i f=. j, (otherwise, 
if Bi n Bj f=. 0, we would have Bi = Bj; indeed, if s E Bi n Bj and t is 
arbitrary in B;, then 3a E A*, such that t = Ti(S, a) = rj(s, a) E 8j , 
so Bi C Bj and, similarly, Bj C 8 i ). 

Moreover, (T, 0) is a subhypergroup of (B, 0) if and only if there 
is J ~ I, J f=. 0, such that T = UBi. The subhypergroup (T,o) of 

iEJ 

(B, 0) is inner irreducible if and only if 3j E I, such that T = Bj . 

Indeed, if T = U Bk and J is a subset of I, containing at least 
kEJ 

two elements, then ViE J, we have 

contradiction with the fact that (T, 0) is inner irreducible. 
According with 2) we obtain that Vi E I, 8 i = s; for any 

Si E Bi , therefore for any inner irreducible subhypergroup (T, 0) 
of (B, 0) we have T = Bi for some i E I and 8 i = s; for any 
Si E Bi = T. 

"{=:=" Since any inner irreducible subhypergroup (T, 0) of (B, 0) 
can be written as T = e, for some t E T it follows, according to 2), 
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that (T, M, r /T) is a strongly connected subautomaton of (S, M, r). 
On the other hand, we have: 

S=ut2 = U T 
tES (T.o) inner irreducible 

subhypergroup of (S, 0) 

so the automaton (S, M, r) is retrievable. • 
In the following, we shall give necessary and sufficient con­

ditions, such that the state hypergroup (S,o) of an automaton 
(S, M, r) is a join space. 

23. Proposition. Let (S, r) be a quasi-order set and (S, or) the 
quasi-order hypergroup defined as follows: 

'I/(s, t) E S2, S Or t = r{s) U r{t). 

Then the following two conditions are equivalent: 

1) the hypergroup (S, or) is a join space; 

2) if a and b are arbitrary elements of S such that 3x E S, for 
which xra and xrb, then 3y E S, such that ary and bry. 

Proof. 1) ==> 2) Since xra and xrb it follows {a, b} C r{x), so 
xEa/bnb/a and since (S, or) is a join space, we obtain tht a2nb2-=f.0, 
that is r{a) n r{b) -=f. 0, whence 3y E r{a) n r{b), that means ary 
and bry. 

2) ==> 1) Let (a,b,c,d) E S4, such that a/bnc/d 3 x, for some 
xES. It follows a E r{b) U r{x) and c E r{d) U r{x). 

We have the following situations: 

1°) {a, c} C r{x). Then, by 2), it follows 3y E r{a) nr{b), whence 
(r{a) U r(d» n (r{b) U r{c» -=f. 0, that is a Or d n bOr C -=f. 0. 

2°) a E r{b) and c E r{d). Then a E r{a)nr{b) so a Or dnbor c -=f. 0. 
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30) aEr(x) and cEr(d). Then cEr(c) nr(d), so a Or dnbor c # 0. 

40 ) a Er(b) and cEr(x). Then aEr(a) nr(b), so a Or dnb Or C # 0. 

Therefore, (8, or) is a join space. • 
24. Theorem. Let (8, M, 7) be an automaton and (8,0) the asso­
ciated state hypergroup. The following conditions are equivalent: 

1) the hypergroup (8, 0) is a join space; 

2) for any (s, t) E 8 2 , for which 3u E 8, such that sot ~ u2 , 

there exists v E 8 with the property v2 ~ S2 n t 2 . 

3) for any (s, t) E 8 2, for which 3(a, b) E M*2, 3u E 8, such 
that 7(U, a) = s, 7(U, b) = t, we have that 3(c, d) E M*2, such 
that 7(S, c) = 7(t, d). 

Proof. 1)====?2) Let r be the quasi-order on 8, which determines 
the hyperoperation "0". Notice that r is the transitive closure of 
the relation p C 8 2 defined as follows: 

Let (s,t) E 8 2 , such that 3u E 8: sot ~ u2, that is r(s)Ur(t) ~ 
~ r(u), whence we obtain s E r(u) and t E r(u). By the previous 
proposition, it follows that 3v E 8, such that v E r(s), v E r(t). 
Then r(v) ~ r2(s) n r2(t) ~ r(s) n r(t), that is v2 ~ S2 n t 2. 

2)====?3) Using the above defined quasi-order r, we have 

\:Is E 8, r(s) = 7(S, M*). 

Let (s,t) E 8 2 such that 3(a,b) E M*2, 3u E 8: 7(u,a) = s 
and 7(u,b) = t. Then s E r(u) and t E r(u), whence sot = r(s) U 
Ur(t) ~ r2(u) U r2(u) = r2(u) ~ u2. By 2) it follows that 3v E 8 
such that v2 ~ S2 nt2, hence v E v2 ~ r(s) nr(t), that is srv and 
trv. 
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By the definition of r, it follows that there exists (c, d) E M*2, 
such that 

7(S, c) = v and 7(t, d) = v, 

hence 7(S, c) = 7(t, d). 

3)==}1) Considering the relation r defined as follows: 

srt ¢=? 3a E M* : 7(S, a) = t, 

we obtain that 3) is exactly the condition 2) of the previous propo­
sition, so 3)==}1). • 



Chapter 7 

Cryptography 

For ages, cryptography has been used in military and 
diplomatic communication, in order to make the meaning 
of transmitted messages incomprehensible to unauthorized 
users. 

As Francis Bacon said, "The art of ciphering, half for 
relative an art of deciphering, by supposition unprofitable, 
but as things are, of great use". Lately, W. Diffie and M. 
Hellman [126} point out the new directions in Cryptography. 

In this chapter, we have presented some hyperstructures 
derived from generalized designs and some cryptographic 
interpretations on hyperstructures. As being a science in a 
continuous development, ciphering can still be improved, 
using a relative new theory, that one of Hyperstructure 
Theory. 

§1. Algebraic cryptography 
and hypergroupoids 

The study of sending messages methods, which cannot be read by 
an unauthorized person, is called cryptography. 

One of the most famous cryptography code was introduced be­
fore 1500 by the Frenchman Blaise de Vigenere. This code was un-

247 
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breakable for more than three hundred years. The Vigenere square 
is one of the first algebraic structures of the history, probably the 
first one; its ancient name was ZIRUPH. This square is isomorphic 
to the additive group of residues modulo 26. 

A Prussian officer broke the Vigenere code in 1860, using a 
statistical text: the Kasisky text. 

In few words, we explain how a message can be sent to a re­
ceiver, using an algebraic cipher system. 

Let us consider a finite set A, called alphabet, a subset K of A, 
called key-set and a binary operation on A, called enciphering. The 
message to be sent (called cleartext) is written with the elements of 
the alphabet A. Using the elements of K, we construct a so-called 
keyword, writing the elements of K, one after the other, respecting 
the lengths of the cleartext words. We transform the cleartext into 
a ciphertext, using the keyword, in the following manner: each ele­
ment of the cleartext is replaced by the result of enciphering this 
element with the corresponding element of the keyword. The ob­
tained ciphertext is sent to the receiver. 

In order to reconstruct the initial message, V k E K, Va E A, 
the equation k * x = a must have a unique solution, that means 
V k E K, (k * X)xEA must be a permutation of the alphabet A. 

Example. Let (A, *) be a finite groupoid and K ~ A, such that 
V (k, a) E KxA, the equation k * x = a has a unique solution in A. 

Suppose 

cleartext: 

keyword: 

ciphertext: 

A = {a,b,c,d,e,j, ... ,z,t} and 
K = {u,v, z, t} 

hypergroups have applications 

uvztuvztuvz tuvz tuvztuvztuvz 

(u*h)( v*y )(z*p )(t*e)( u*r)( v*g )(z*r )(t*o)( u*u)( v*p )(z*s) 
(t*h)( u*a)( v*v )(z*e) 
(ha)( u*p) ( v*p )(z*f)( t*i)( u*c)( v*a )(z*t)(t*i)( u*o)( v*n )(z*s) 
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Using the hyperstructures, we can construct some more sophis­
ticated cryptographic systems. 

This topic has been investigated by 1. Berardi, F. Eugeni and 
St. Innamorati and more recently, by R. Migliorato and G. Gentile. 
In the following, we shall present some results of Berardi, Eugeni 
and Innamorati. 

1. In this case, the key-word contains two secrets: the alphabet and 
the length of ciphering. The enciphering is now a hyperoperation. 

Example. Let 
A = {a,b,c, ... ,z} and 
K={b,a,d}; 

the length of ciphering: 2 (corresponding to b), 1 (corresponding to 
a),4 (corresponding to d) and let us consider a hyperoperation "*" 
on A, such that Vk E K, V(x,y) E A2 , we have 

k * x = k * y ~ x = y. 

Let us consider 
b*h 
a*y 
d*p 
b*e 
a*r 
d*g 
b*r 
a*o 
d*u 
b*p 

cleartext: hypergroup 
keyword: badbadbadb 

in 
t 
eres 
ti 

= n 
gand 

= be 
= a 

utif 
= ul 

Therefore, the ciphertext is: interestingandbeautiful. 

2. Variable-size cipher system. Let (A, *) be a hypergrou­
poid and H the set of idempotents of (A, *). (h is idempotent if 
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h * h = h.) The alphabet is A. We use two keys: a main key (that 
belongs to A - H) and a special key (that belongs to H). 

The codification consists in ciphering any clearletter m by the 
secret main key k, and then, in writting the special key h after the 
cipher k * m. 

If the cleartext is: mImZ ... mtmt+1 ... msms+1 ... the main key 
is: klkz ... kskIk2 ... and the special key is: hlhz ... hthIhz ... then, the 
ciphertext is: 

[kI * mIl hI * hI[kz * mzJhz * hz· .. !kt * mtlht * ht ... 

and, since" *" is a hyperoperation, we obtain 

aIaZ ... aihlblbz ... bjhz ... ZlZZ ... zght ... 

The receiver knows the special key, but he does not know the po­
sition of the special key in the ciphertext. Notice that the cipher 
k * m could contain the special key h, as in the following example: 

ciphertext: albdebfanm 
special key: bmbm ... 

We have two possibilities: the ciphers could be: 
al; debfan or 
albde; fan. 

We can avoid this situation, assuming that for every k of the main 
key, the corresponding row {k * X hEA is a Sperner family, which 
does not happen in our case (indeed, we have "alcalbde" and 
"fanCdebfan"). Remember that a family n of subsets of A is a 
Sperner family if 

v (X, Y) E nZ, neither X C Y nor Y C X. 

3. The next procedure is called "how to share pieces of mes­
sages". The idea is the following one: the sender transmits the se­
cret message to two receivers using two different algorithms f and g, 
respectively, such that none of them can read the message without 
the permission of the other one. None of the receivers knows the 
algorithms f and g, but they know an algorithm F that computes 
the secret message m by the two cipher messages f(m) and g(m), 
that is they know an algorithm F, such that F(f(m),g(m» = m. 
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§2. Cryptographic interpretation of some 
hyperstructures 

Let us notice that hyperstructures derived from linear spaces can be 
obtained; these hyperstructures have cryptographic interpretation. 

4. Definition. A geometric space is a pair (P,8), where P is a 
finite set of elements, called points and 8 is a family of subsets of 
P, called blocks. 

A linear space is a geometrical space for which, through any 
two distinct points there is a unique block, said line. 

Let us denote by L(x, y) the line through the different points 
x and y of P and let us define the following hyperoperation on P: 

( ) P2 _ { {x}, if x = y 
V x, Y E , x * y - L( ) ·f ...L x,y, 1 X I y. 

The hyperstructure (P, *) is a quasi-hypergroup. 
Other examples of hyperstructures, associated with non­

projective linear spaces or reducible projective spaces, are presented 
in [24]. 

Notice that, from the cryptographic point of view, it is not 
very useful to consider hyperstructures having a kind of regularity, 
for reasons we shall present below. 

5. Theorem. A hypergroup CA, *), with A = Zn, satisfies the 
following conditions: 

1) V(i,j) E A2, card(i*j) =i+l. 

2) V(i,h,k)EA3, h=/=k=*"i*h=/=i*k. 

if and only if the hyperstructure "*" is defined as follows: 

V(i,j) E A2 , i*j =j+{O,l, ... ,i} 

Proof. "¢=" Immediate. 
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" " S t \..I (..) A2 · . - { i*j i*j} h k h ==} e v Z, J E , Z * J - Xo , ... , Xi ,were < ==} 

x~*j < x~j. Since (A, *) is a hypergroup, the conditions 1) and 2) 
hold. 

The proof consists in the following phases: 
I) We shall verify that ViE A, 0 * i = {i}. We have 

i 

0* (i * 0) = 0 * {x~*o, ... ,x~*O} = U (0 * x~*O). 
j=O 

But card ( 0 * X~*O) = 1 and, by 2), it follows that the elements 

o*xb*o, ... , O*x~*o are different. Therefore, ViEA, cardO*(i*O)=i+1. 
On the other hand, (0 * i) * 0 = {X8*i} * 0 = X8*i * 0, whence 

ViE A, card«O * i) * 0) = X8*i + 1. Since (A, *) is a hypergroup, we 
have Vi E A, X8*i = i, hence Vi E A, 0 * i = {X8*i} = {i}. 

II) Now, we shall check that 

ViEA, i*O={O, ... ,i}. 

By I), we have 0 * 0 = {O}, so 

Therefore, ViEA, card(i * (0 * 0» = i + 1. 
i 

On the other hand, (i*0)*0 = {xb*o, ... , x~*O}*O = U (x~*o * 0) . 
j=O 

Therefore, ViE A, 

i 

i + 1 = card(i * (0 * 0» = card«i * 0) * 0) = cardU (x;*O * 0). 
j=O 

The set (i * 0) * 0 is a union of non-empty sets. Hence each subset 
of this union contains at most 1 + i elements, that is V j E {O, ... , i}, 
card (x~*o * 0) :s; i + 1. By 1), (x~*o * 0) has exactly x~*o + 1 ele-

t \..I. {O .} i*O < . Th I t i*O i*O f· 0 men s, so v J E , ... , Z ,Xj _ z. e e emen s Xo , ... , Xi 0 Z * 
are distinct, so, Vi E A, i * 0 = {O, ... , i}. 
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III) We prove that 

V (i, j) E A2, hE {O, ... , i} we have h * j ~ i * j. 

By I) and II), V(i,j) E A2, we have 

i 

i * j = i * (0 * j) = (i * 0) * j = {O, ... , i} * j = U h * j, 
h=O 

whenceVhE{O, ... ,i}, h*j~i*j. 

IV) We shall verify the implication: 

(V h ~ i, h + j E h * j) ~ i * j = {j,j + 1, ... ,j + i}. 

Let h + j E h * j, for all h ~ i. Then 

i 

{j,j + 1, ... ,j + i} s:: Uh*j ~ i *j. 
h=O 

But card(i * j) = i + 1, so we have 

i * j = {j,j + 1, ... ,j + i}. 

V) Notice that, if V (i, j) E A2, i + j E i * j, then the theorem is 
obtained directly from IV). So, we shall verify that this condition 
holds. 

VI) We prove that V( i,j)E A2, j+i E i*j. Suppose that 3( Uo, vo) E A2, 
such that Uo + vo tj. vo * Uo and let v be the smallest element of A, 
such that 3Ul E A : Ul + v tj. v * Ul. By I), it follows v =f. O. Let U 
be the smallest element of A, such that 

By IV), we have 

V (i,j) E A2, i < v ~ j + i E i * j ~ i * j = {j,j + 1, ... ,j + i}, 
V j E A, j < U ~ j + v E v * j ~ v * j = {j,j + 1, ... ,j + v}. 
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Particularly, (v - 1) * u = {u, u + 1, ... , u + v-I}. 
By III), we have (v - 1) * u C v * u. 
On the other hand, card(v * u) = v + 1 and since u + v¢v * u, 

the set v * u - {u, u + 1, ... , u + v-I, u +v} has only an element x. 
Then v *u = {u,u+ 1, ... ,u+v -I} U {x}. 

Possibilities: 

1° XE{u+v+l, ... ,n-l}, 

2° XE{O,I, ... ,u-l}. 

1 ° If x E {u + v + 1, ... , n - I}, then v * u = {xg*u, ... , x~*U}, where 
x~*u = u + s, for s E {a, ... , v - I} and x~*u = x. We have 

v 

(v*u)*O={xo*u, ... ,x~*U}*O= u (xj*u*O) 
j=O 

and using III, we obtain 
v 

U (xj*u * 0) = x~*u * 0. 
j=O 

Therefore (v * u) * 0= {a, ... , x~*U} = {a, ... , x}, whence 
u + v E (v * u) * 0. Moreover, 

v* (u*O) ~"* {O, ... ,u} ~ ;Qv *j ~ CQv*j) U (v *u) ~ 
= {a, 1, ... , u + v - I} U {xg*u, ... , x~*U} = 

= {a, 1, ... , u + v - I} U {u, u + 1, ... , u + v-I, x} = 

= {O,I, ... ,u+v-l,x}, 

whence it follows u + v ¢ v * (u * 0) = (v * u) * 0, a contradiction. 

2° If x E {a, 1, ... , u-l}, then we have v*u = {xg*u, ... , x~*U}, where 
xg*u = x and x~*u = u + s -1, for s E {I, ... ,v}. 

Then, v * u = {xg*u, ... , x~*U} = {x} U {u, u + 1, ... , u + v-I}, 
where v -=j:. 0. 
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If v> 1, we obtain easily a contradiction. Indeed, let us consider: 

(v - 1) * (1 * u) = (v - 1) * {u, u + I} = 

= ((v - 1) * u) U ((v - 1) * (u + 1» = 

= {u, u + 1, ... , u + v - I} U {u + 1, u + 2, ... , u + v} = 

= {u, ... ,u+v}. 

On the other hand, 

v 

((v-l)*I)*u = {I, ... ,v}*u = Uj*u = v*u = {x,u, ... ,u+v-l}. 
j=l 

Therefore, {u, ... , u + v} = {x, u, ... , u + v - I}, a contradiction. 

By 2), we have v * (u - 1) =I v * u, hence x =I u - 1, whence 
u tf. {O, I}. 

We shall prove that v = 1 implies u = 1, which is in contradic­
tion with u tf. {O, I}. First, we prove that if u > 8 - 1, then 

8 * (u - 1) = {x, x + 1, ... , x + 8 - 2, u - 1, u} for s E {2, ... , u}. 

For s = 2, we have 

1 * (1 * (u - 1» = 1 * {u - 1, u} = (1 * (u - 1» U (1 * u) = 
= {u -1,u} U {x,u} = {x,u -1,u} and 

(1 * 1) * (u - 1) = {I, 2} * (u -1) = (1 * (u - 1» U (2 * (u - 1» = 
= 2 * (u -1), 

whence 2 * (u -1) = {x,u -1,u}. 

Suppose the assertion true for s - 1 and we shall prove it for s 
(where s ::; c). We have: 

1 * ((s - 1) * (u - 1» = 1 * {x, x + 1, ... , x + s - 3, u - 1, u} = 
= {x, x + I} U {x + 1, x + 2} U ... U {x + 8 - 3, x + s - 2}U 
U{u -1,u} U {x,u} = {x,x + 1, ... ,x + s - 2,u -1,u} and 

(1 * (s -1» * (u -1) = {s -1,s} * (u -1) = 
= ((s - 1) * (u - 1» U (8 * (u -1» = 8 * (u - 1). 
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Therefore, s * (u - 1) = {x, x + 1, ... , x + s - 2, u - 1, u}. 
Let us consider u = s. We have 

1 * (s * (u -1)) = 1 * {x,x + 1, ... ,x + s - 2,u -l,u} = 
= {x, x + I} U {x + 1, x + 2} U ... U {x + s - 2, x + s - l}U 

U{u-1,u} U {x,u} = {x,x+ 1, ... ,x+ s -l,u -l,u} and 

(1 * s) * (u - 1) = {x, s} * (u - 1) = (x * (u - 1)) U (s * (u - 1)) = 
= s * (u -1) = {x,x + 1, ... ,x + s - 2,u -l,u}, 

whence we obtain x + s - 1 = u - 1 and since s = u, it follows 
x = 0. Therefore 

u*(u-1)={0,1, ... ,u-1,u}=u*0 

and by 2) it follows u - 1 = 0, that is u = l. 
Therefore, the both possibilities for x lead us to contradictions. 

Then \:f (i,j) E A2, j + i E i * j, and so, the theorem is completely 
proved. _ 

6. Remark. Notice that for any k E {I, 2, ... , n - I} the elements 
of the row k (in the composition square) are sets of k + 1 elements. 
The advantage of using this hyperstructure is the following one: we 
use dispositions instead of permutations and there are many more 
dispositions than permutations. 

On the other hand, this hyperstructure is not very interesting 
from the cryptography point of view: indeed, it is the same as 
ciphering in such a way as to divide the cleartext in letters and to 
insert a number of letters equal to the key (because \:f j E A, j E i * j 
and card(i * j) = i + 1). 

In constructing algebraic cryptosystems, it is very important 
to remember that: " Cryptography likes confusion" 



Chapter 8 

Codes 

In general, Code Theory and more precisely Error-Cor­
recting Code Theory is one branch of applied mathematics, 
which massively uses algebraic methods and results. 

Through a channel, recall that Error-Correcting Code 
Theory is essential for all types of communications (for in­
stance, telephonic communications, radio communications 
and so on). 

Among the most remarkable codes, we recall Hamming 
codes, Q R-codes, which are important classes of cyclic codes. 

We present below a connection between Steiner hyper­
groups and linear codes. We think that the study of this 
connection deserves to be studied in depth. For more de­
tails on Error-Correcting Codes, see [452], [454] and [457]. 

G. Tallini established connections. between Code Theory and 
Hyperstructure Theory. We mention some of his results in §1 and 
in §3. 

All the notions mentioned in this chapter are defined and studied 
in a very interesting book [454] on Combinatorics, Galois geometry 
and Codes. For a good understanding of the results of this chapter, 
we suggest the reader to examine this book. Thus, we shall present 
here some definitions we shall use in the following. 

257 



258 PIERGIULIO CORSINI and VIOLETA LEOREANU 

§ 1. Steiner hypergroupoids 
and Steiner systems 

1. Definition. A hypergroupoid (H,·) is called n-hypergroupoid 
of Steiner if it satisfies the following conditions: 

(i) V(x,y)EH2, xExy3y. 

(ii) V (x, y) E H2, card(x. y) = { 1, 
n, 

if x = y 
if x i= y. 

(ii) the associativity law holds for every three elements, not all 
distinct. 

2. Remarks. 

1. By (i), it follows that (H,·) is a quasi-hypergroup and by (i) 
and (ii), we obtain that Vx E H, xx = {x} and n ~ 2. 

2. By (iii) and 1), it follows: 
V(x,y) E H2, x(xy) = xy = (xy)y and x(yx) = (xy)x, 
whence we obtain V(x,y) E H2, x i= y, V(z,u) E xy, z i= u, 
we have xy = zu and so, it follows the commutativity. 

3. Definition. An n-system of Steiner is a pair (H, n), where 
H is a non-empty set, whose elements will be called points and n 
is a family of subsets of H, called lines, such that the following 
conditions hold: 

(i) any line has exactly n points 

(ii) for any two different points there is a unique line which con­
tains them. 

Let us see what is a Galois field. 
Let 9 E ~p[Xl (where p is a prime), 9 irreducible, such that 9 

has the degree h ~ 2. The field ~p[X]/(g) has the order q = ph and 
it is called a Galois field of order q; we shall denote it by Gq • 
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Notice that any finite field of order q = ph is isomorphic with Gq . 

4. Example of an n-system of Steiner. Any projective or affine 
space over a Galois field of order q is an n-system of Steiner, with 
respect to its lines (where n = q + 1 or n = q). 

5. Theorem. With any n-system of Steiner, we can associate an 
n-hypergroupoid of Steiner and conversely. 

Proof. Let (H, R) be an n-system of Steiner. For V (x, y) E H2, 
let 

{
X, if x = y 

x 0 y = the line through x and y, if x =1= y. 

We can easily check that (H,o) is an n-hypergroupoid of Steiner 
and we shall call it the n-hypergroupoid of Steiner, associated with 
the n-system of Steiner (H, R). 

Conversely, if (H, *) is an n-hypergroupoid of Steiner, then we 
consider the family 

{x * y I (x, y) E H2, X =1= y}, denoted by R. 

We shall verify that (H, R) is an n-system of Steiner. Indeed, by 
(ii) of the definition of an n-hypergroupoid of Steiner, it follows 
that for all (x, y) E H2, X =1= y we have card(x * y) = n. By (i) of 
the same definition, V (x, y) E H2, X =1= y, there exists a line x * y, 
which contains x and y. 

Moreover, there exists a unique line, containing x and y. 
Indeed, if (r, s) E R2 and {x, y} ern s and if r = z *t (where 

(z, t) E H2, Z =1= t) and s = u * v (where (u, v) E H2, U =1= v), then 
z * t = x * y = u * v. 

Hence r = s and therefore, (H, R) is an n-system of Steiner .• 

6. Definition. A hypergroup (H, 0) is called a Steiner hypergroup 
if the following conditions hold: 

(i) V x E H, x 0 x = x. 

(ii) V(x,y) E H2, x ney, we have x E x 0 Y 3 y, x 0 y =1= Hand 
card(x 0 y) ;;::: 3. 
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(iii) V (x, y) E H2, X =J y, V z E xoy, z =J x, we have xoy = zox. 

7. Remarks. 

1. Any Steiner hypergroup is a commutative hypergroup (by 
(iii)) . 

2. In a Steiner hypergroup (H, 0), the following condition holds: 
V (x, y) E H2, x =J y, V { u, v} C x 0 y, u =J v, we have x 0 y = 

= u 0 v. Indeed, if u = x, the above condition results from 
(iii) and from the commutativity. If u =J x, then v E x 0 Y = 
= u 0 x = v 0 u = u 0 v. 

8. Theorem. With any finite Steiner hypergroup (H,o), we can 
associate a finite irreducible projective space of dimension 2: 2 and 
conversely. 

Proof. Let F = {xoy I (x, y) E H2, x =J y}. Since V (x, y) E H2, 
x =J y, V {u, v} C xoy, u =J v we have xoy = uov, it follows that 
(H, F) is a projective space. Moreover, since V (x, y) E H2, x =J y 
we have card(xoy) 2: 3 and xoy =J H, we obtain that (H, F) is a 
finite irreducible projective space IP r of dimension r 2: 2, that is 
either PG(r, q), the projective space over the Galois field of order 
q = card(xoy) - 1 or a non-Desarguesian plane of order q (see 
Theorem 13.1, [454]). 

Conversely, let IP r be a finite irreducible projective space of 
dimension 2: 2. We can define on IP r the following hyperoperation: 
V (x, y) E IP;, x =J y, xox = x and xoy is the line through x and y. 

Then (lP nO) is a Steiner hypergroup. _ 

§2. Some basic notions about codes 

The theory of codes finds out and corrects the errors, that can be 
introduced by the transmission of information from a source to a 
receiver. 
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Usually, the information is translated in a language with a 
small number of symbols, which are the elements of '8,p (where p is 
a prime natural number). 

Often, it is considered p = 2. Any element of the message is 
represented by a finite sequence of symbols, which is called pass­
word. We shall consider codes with an invariable length, that means 
codes whose paswords contain the same number of symbols. 

This number is called the code length. 
Let n be the length of a code V over ~p, We consider a proper 

subset of '8,; as set of passwords. 
The set of passwords must be different from ~;, otherwise it 

is impossible to correct errors. 
Indeed, if instead of a code password we receive another one, 

different from all the code passwords, then we notice an error. It is 
important that the set of code paswords contains only one password 
which is similar with the received password. Thus, any proper 
subset of '8,; is considered to be a code of length n over ~p. 

Let V be such a code. The elements of V are called passwords. 
If x = (XI, ... , xn ) E '8,; then the number 

w(x) = card{xi liE {I, 2, ... , n}, Xi =1= O} 

is called the Hamming weight (or weight) of x. 
Let (x, y) E '8,; x '8,;. The weight of x-y is called the Hamming 

distance (or distance) of x and y and it is denoted by d(x, y). 
The following conditions, which characterize the distance no­

tion, are verified: for any x, y, z in ~; : 

d(x,y) = 0 if and only if x = y 
d(x, y) = d(y, x) 
d(x, z) ~ d(x, y) + d(y, z). 

The minimum weight of V, denoted by w, is the minimum of 
the nonzero passwords weights of V. 

The minimum distance of V, denoted by d, is the minimum of 
distances between two distinct elements of V. 
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V is called a linear code if it is a subspace of the vectorial space 
~;. 

In a linear code, the minimum distance d and the minimum 
weight w are equal. 

If V is a linear code of length n, dimension r and minimum 
weight w (which is equal with d), then we say that V is an (n, w, r)­
code. 

If we write the elements of V one below another, then we obtain 
the so-called book of V. 

Let V be a linear code of dimension r. 
V is uniquely determined by r independent passwords of it. 

The matrix which has as lines these r passwords is called the gene­
rated matrix of V. 

Let H = (~~.l . .".:.". ~~.~) be a generated matrix of V 
Xrl ••. Xrn 

Xn··· Xln 

and suppose that #0. 
Xrl ..• Xrr 

Let Cll C2, ••• , Cr be r arbitrary elements in ~p. Then there 
is a unique password of V whose first r coordinates are exactly 
CI, C2, ..• , Cr· 

Therefore, the first r coordinates are sufficient to obtain the 
information. 

From H we can obtain the so-called matrix of information 
composed by the first r columns; the others n - r columns form the 
check matrix (or parity check). 

The rate of the code V is the number r / n. 
A reasonable code has a high rate and a high minimum dis­

tance. 
If d is the minimum distance of V, we can correct any password 

which has a number h of errors (during the transmission), with 
h < d/2. Indeed, if we receive x instead of x E V, such that 
d(x, x) = h < d/2, then for any y E V, y # x, we have d :::; 
:::; d(x, y) :::; d(x, x) + d(y, x) = h + d(y, x) < d/2 + d(y, x), whence 
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dey, x) > d - d/2 = d/2. Hence x is the unique password of V, such 
that d(x, x) < d/2 . 

. Since the number of errors is h < d/2, we can identify x as the 
right password, obtained from x. 

An open problem is the following one: let n and r be known; 
we are interested to find the maximum value of d, such that there 
is an (n, d, r )-code. 

§3. Steiner hypergroups and codes 

Now, recall some definitions (see [454]). 
A projective plane is a pair (11", n), where 11" is a set, whose e­

lements are called points and n is a family of subsets of 11", called 
lines such that the following conditions hold: 

(i) there is a unique line, containing two distinct points; 

(ii) any two distinct lines has exactly one common point; 

(iii) there exist four points, such that any three points of them are 
not collinear. 

Let 11" be a projective plane. 
A subset K of 11" is called arc if any three points of K are not 

collinear. 
A line is called tangent of K if its intersection with K has 

exactly one point. 
An oval n of 11" is an arc such that for '</ x E fl, there is exactly 

one tangent tx in x to n. 
A hyperoval is an arc without tangents. 
Let (H,o) be a Steiner hypergroup with n elements and let 

lP r,q = (H, F) be the associated projective space, where r is the 
dimension and q = card(xoy) -l. 

r 

Now, we order the points of H and set n = Vr = Lqi. The 
i=O 

characteristic function of each subset X of H determines a vector 
rp(X) of Z~. 
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Let'IjJ: HxH ---+ ~~-{O} = PG(n-1, 2) (where PG(n-1, 2) 
is the (n - 1) dimensional projective space over ~2)' 

'IjJ(x, y) = rp(xoy). 

Denote K = 'IjJ(HxH - IH), where IH = {(x,x) I x E H}. That 
means K consists of all the points in PG(n - 1,2), whose coordi­
nates are the characteristic functions of the lines of lPr,q. 

Let £ be a family of lines of lPr,q. We say that £. is of even 
type if through any point of lP r,q, an even number of lines of £ pass. 
The points of K, which correspond to the lines of £, are linearly 
dependent. 

Conversely, if a subset L' of K is linearly dependent, then the 
family £' of lines of ll'r,q, whose characteristic functions are the 
coordinates of the points of L', contains a subfamily £ of even 
type. 

9. Theorem. Let £ i- 0 be an even type family of lines of lPr,q. 

Then card £ ?: q + 2 and we have card £ = q + 2 if and only if if 
q is even and £ is a dual hyperoval on a plane of lP r,q, that is a 
hyperoval in the dual plane. 

Proof. Let f be a line of £. Through any point of f, there passes 
an odd number of lines of £, different from f. Since card f = q + 1, 
it follows card £ ?: q + 2. 

If card £ = q + 2, then through any point of f, there passes 
exactly one line of £, different from f. 

Since f is no special line of £, it follows that the lines of £ are 
pairwise incident. Therefore, they lie on a plane of lP r,q and form 
a dual hyperoval. _ 

Let P be a point of lP r,q and let S p be the set of all lines of 
lPr,q, which pass through P. We shall call Sp the star of lines with 
center P. 

10. Theorem. There is no star of lines of lP r,q which contains a 
non-empty set of even type. 
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Therefore, the image of a star, under cp, is a subset K of 
PC(n - 1,2) which consists of linearly independent points. 

Consequently, if A denotes the matrix whose columns are the 
coordinates of the points of K, then 

Vr- 1 :::; rank A :::; Vr = n and card K = Vr Vr-I!V1 

Proof. Let Sp be a star in IP r,q' A unique line of Sp passes through 
any point of IP r,q - {P}. Therefore, Sp contains no non---empty even 
type set. 

The matrix A has n = Vr lines and card K = Vr Vr-I!V1 (the 
number oflines in IPr,q) columns. By the previous argument, A has 
Vr - 1 = cardSp linearly independent columns, so Vr - 1 :::; rankA :::; 
:::; Vr = n. _ 

11. Definition. Let (s, N) E ~,2, N> s + 1 2: 2. A subset K of 
PC(r, q) is called N-cap of kind s if K has N elements, such that 
any (s + 1) elements of K are linearly independent and there are 
(s + 2) elements of K, which are linearly dependent. 

From the above two theorems, it follows the following 

12. Corollary. The set K is an N -cap of kind s, which belongs to 
a space PC(t - 1,2), where 

N = cardK = VrVr-I!V1 , s 2: q and 
Vr- 1 :::; t = rank A :::; Vr = n. 

We have s = q if and only if q is even and either r 2: 3 or (r = 2 
and the dual plane IP;,q contains hyperovals. 

Moreover, if r 2: 3, then (q < s :::; 2q if q is odd) or (s = q if q 
is even). 

Let C q be a Galois field of order q (where q = ph, P prime) and 
Ck a linear code of dimension k of C~, that means C k is a vectorial 
subspace of dimension k, of C~. 
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The study of linear codes of G:, which correct errors is in connection 
with the study of n-caps of a Galois space (see [454], 44). 

13. Theorem. (Th. 43.2, [454]) The linear code Ck corrects e 

errors if and only if e = [W; 1] , where w is the minimum weight 

of ck and [x] is the integer part of x, that means [x] S;;; x < [x] + 1. 

Now, consider the following subspace of 7i,'i : Cd = {X E 7i,'i I 
AX =O}. 

It follows that Cd is a linear (N, w, d)-code with N = Vr Vr-dVI, 
w = s+2 and d = N -t and it corrects e = [(w-l)/2] = [(s+1)/2} 
errors. Since (q < s S; 2q if q is odd) or (s = q if q is even) it follows 
that q/2 S; e S; q. 

Moreover, the following statements can be verified: 

1) if r = 2, q == 2(mod4) 
then t = (q2 + q + 2)/2 and d = (q2 + q)/2. 

2) if r = 2, q == O(mod4) 
then t < (q2 + q + 2)/2 and d> (q2 + q)/2. 

3) if r = 2, q odd then t = n - 1 = q2 + q; d = 1. 

14. Proposition. We have t :2: Vr- l + qr-l - 1. 

Proof. Let us consider two distinct points Pt and P2 of lP r,q and 
a hyperplane 7f on P2 and not on Pl. 

The set of all the lines through PI and all the lines through P2 

not on 7f, contains no even type subset. 
Therefore, K contains Vr- l +(Vr- l - Vr- 2 -1) = Vr- l +qr-I_l 

linearly independent points. • 



Chapter 9 

Median algebras, Relation 
algebras, C-algebras 

• For the first time, median algebrBB appeared in the 
late fourties. A.A. Grau [148) characterized Boolean 
algebrBB in terms of median operation and comple­
mentation, G. Birkhoff and S.A. Kiss [25) discusses 
the median operation for distributive lattices. The 
concept of abstract median algebra WBB introduced by 
S.P. A vann [12) and later M. Scholander [356), [357], 
[358) and S.P. A vann [13) performed a detailed study 
of median algebrBB. More recently, J. Nieminen [301), 
E. Evans [139), H.M. Mulder A. Schrijver [297], J.R. 
Isbell [165], H. Werner [424) worked on this subject. 

• We shall see that qUBBi-canonical hypergroups can 
be characterized BB the atomic structures of complete 
atomic integral relation algebrBB (§2). Moreover, the 
Tarski complex-algebra construction gives a full em­
bedding of qUBBi-canonical hypergroups into relation 
algebrBB. Therefore, certain combinatorial properties 
of qUBBi-canonical hypergroups transfer to relation al­
gebrBB. Using this process, results of Monk [295], [296) 
or McKenzie [263], [453], about relation algebrBB (or 
cylindric algebrBB) turn out to be just interpretations 
of qUBBi-canonical hypergroup results. 

267 
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• Let us remember some remarkable C-algebras: the 
adjancency algebras of association schemes [441J, S­
algebras over finite groups [31), and centralizer alge­
bras of homogeneous coherent configurations [449J. 

§1. Median algebras and join spaces 

In this section, we present a connection between median algebras 
and join spaces, which was established by H.J. Bandelt and J. 
Hedlikova. 

1. Definition. A ternary algebra is a set M together with a 
single ternary operation (a, b, c) -+ (abc). A ternary algebra M is 
called median algebra if it satisfies the following identities for any 
(a, b, c, d, e) E M 5 : 

1) (aab) = a; 

2) (abc) = (bac) = (bca); 

3) «(abc)de) = (a(bde)(cde)). 

2. Theorem. (see [357]) On every median algebra M, the following 
hyperoperation 

v ( a, b) E M2, aob = {x E M I x = (abx)} 

satisfies the properties: 

(0:) Va EM, aoa = {a}; 

(f3) if b E aoc, then aob ~ coa; 

(r) V (a, b, c) E M 3 , aob n boc n coa = {d} (where d = (abc)). 

Conversely, every hyperoperation "0" which satisfies the properties 
(0:), (f3) and (r) induces a unique ternary operation by which M 
becomes a median algebra. 
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3. Theorem. Let M be a ternary algebra such that the conditions 
1), 2) of Definition 1 and 

4) V(a,b,c) E M3, «abc)bc) = (abc) 

are true in M. Set V(a, b) E M2, aob = {x E M I x = (abx)}. 
Then (M, 0) is a join space if and only if M is a median algebra. 

Proof. From 1) and 2) it follows that V (a, b) E M2, we have 

aob of- 0 of- alb, aob = boa and aoa = {a}. 

"¢=" First, suppose that M is a median algebra. 
If x E (aob )oc, then there exists y E M, such that x 

= «aby)ex) = (a(bex)(exy», whence the associativity of "0" fol­
lows. 

Let us prove now that: if alb n e/d of- 0, then aod n boc of- 0. 
Let x E a/bnc/d. Then (ad(bdx» = «abx)d(bdx» = (bdx). It 

follows (bdx) E aod, and similarly (bdx) E boc. 
Hence, (M,o) is a join space. 

"==:;." Conversely, let us assume that (M,o) is a join space. 
If b E aoc and x E aob, then by the associativity of "0" and by 
aoa = {a}, for any a EM, we obtain 

x E ao(aoc) = (aoa)oc = aoc. 

Since" 0" is commutative, the following implication is satisfied: 

b E aoc ==:;. aob ~ coa, 

that is (13). From 4), we obtain that for x = (abc), we have 

x E aob n boc n coa. 

On the other hand, if y E aob n boe n coa, then b E x/a n y/c 
and bEy / a n x/c. Since (M, 0) is a join space, it follows that there 
exist u E xoc n aoy and v E yoc n aox. 
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From x E aoe and u E xoe, it follows e E x/a n u/x, so 
xox n aout=0, whence x E aou. 

Similarly, we obtain y E aov. 
By the associativity of "0", u E aoy and x E aou imply 

x E aoy; v E aox and y E aov imply y E aox. 
Hence x = (axy) = y, whence it follows (-)-). 
By the previous Theorem, we can conclude that M is a median 

algebra. _ 

§2. Relation algebras and quasi-canonical 
hypergroups 

4. Definition. A system < A, +,., -,0,1, *, -l, l' > is called a 
relation algebra (RA) if: 

1° < A, +,., -, 0, 1> is a Boolean algebra; 

2° < A, *, l' > is a semigroup with identity; 

-1 is a unary operation, which satisfies the following condition: 

This notion was introduced by Tarski. As examples of relation al­
gebras, we can consider the following system (which is called proper 
relation algebra) < p,u,n,~,0, y 2 ,0, -1,Iy > where P is a family 
of binary relations on a set Y, such that P contains 0, y2 and 
Iy = {(y, y) lyE Y} and it is closed under U, n,~, relation com­
position ° and inverse -1. 

5. Definition. We say that a relation algebra is representable if it 
is isomorphic to a sub direct product of proper relation algebras. 

6. Definition. We say that a relation algebra is an integral one 
(IRA) if one of the two following equivalent conditions holds: 
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1) x * y = 0 ==? x = 0 or y = o. 

2) I' is an atom 
(that means there is no element z, such that 0 < Z < I'.) 

Let us consider now < H,·, -l, e > a quasi-canonical hyper­
group and < P(H), U, n,~, 0, H > the Boolean algebra of all sub­
sets of H. 

We shall still denote by"·" and "-1,, the extensions of the 
quasi-canonical hypergroup operations on subsets. 

7. Definition. The following system 

A[H] = < P(H), U, n,~, 0, H, ., -I, e > 

is called the complex algebra of H. 

The following theorem establishes an one-to---Dne correspon­
dence between quasi-canonical hypergroups and complete atomic 
IRA's and it is due to St.D. Comer [47J. 

8. Theorem. 

(i) If H is a quasi-canonical hypergroup, then A[H] is a complete 
atomic IRA. 

(ii) If A is a complete atomic IRA and AtA is the set of atoms 
of A, then the system At(A) = < AtA, *; -1, I' > is a quasi­
canonical hypergroup. 

(iii) If H is a quasi-canonical hypergroup and A is a complete 
atomic IRA, then 

H ~ At(A[H]) and A ~ A[At(A)]. 

Proof. i) We have to verify only the condition 3° of the definition 
of a relation algebra. If (x·Y)nZ i= 0, then there are Z E Z, x E X, 
Y E Y, such that Z E x .y. Then x E zy-l, so (Z. y-1)nX i= 0. 
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Similarly, we prove the other implications, using also the equa­
lity (x-I)-I = x. 

ii) Whenever x, yare atoms, notice that x * y and X-I are 
atoms, too. 

The only condition to check is the following: 

I' E x * x-I n X-I * x, for all x E AtA. 

We have (I' * x) . x =I- 0, so (x * X-I) . I' =I- 0 and since I' is an atom, 
it follows I' E x * x-I. Similarly, it follows 1 E x-I * x. 

iii) By the correspondence of x with {x}, we obtain the first 
isomorphism and for the second one, we consider the correspon­
dence of a E A with the set of atoms x ::; a. _ 

§3. C-algebras and quasi-canonical 
hypergroups 

The following notion of C-algebra, presented here, is due to Y. 
Kawada [179] and the connection with quasi-canonical hypergroups 
is due to St.D. Comer [52]. 

9. Definition. A C-algebra is a pair (A, B) where: A is an algebra 
and B = {xo, ... , Xd} is a basis for A (as a complex linear space), 
such that the following conditions are satisfied: 

1) forV(i,j) E {O,I, ... ,dp, Xi-Xj = LPfjXk; 
k 

2) ::Ie = Xo E A, such that V (j, k), P~j = 6jk = pjo; 

3) every pt is a real number; 

4) there exists a permutation i'Vt i' of {O, 1, ... , d}, 
such that (i')' = i and pfj = Pj:il; 
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5) for V (i) E {O, 1, ... , d}, :3ki , such that ki > 0, 
and V j E {O, 1, ... , d} we have pJi = p?j = ki8ij,; 

6) the map Xi "-+ ki induces a linear representation of A. 

10. Remark. From 4), it follows that the map Xi "-+ Xi' extends 
to an antiautomorphism of A. 

A C-algebra is commutative if prj = Pji for all i, j, k. 

II. Lemma. We have 

1°) 0' = 0; 

2°) ko = 1; 

3°) ki = ki,; 

4°) kspij = kiPL, = kjpL· 

Proof. We obtain 1°) and 2°) from 2) and 5). 5) also implies 
ki8ij' = kj 8ji, for all i,j; hence ki = kj when j = i' and so we 
obtain 3°). Since (Xi. Xj) • Xs' = Xi. (Xj • x s')' it follows the first 
equality of 4°), expressing each of (Xi. Xj) • Xs' and Xi. (Xj. Xs') 
as a linear combination of xo, ... , Xd and comparing the coefficients 
of Xo. 

From the first equality, 4) and 3°) we obtain the second equa­
lity, so we have 

• 
12. Theorem. With any C-algebra A with basis B, such that the 
parameters pt are all non-negative (the K reim condition), we can 
associate a quasi-canonical hypergroup < B, 0, e >, where Xi OXj = 
= {Xk I pt =J O} and xiI = Xi' for all i,j. 

Proof. Since Xi. Xi' = LP~'Xk = kiXO + ... , it follows Xo E XiOXi', 
k 
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If Xo E XiOXj', then p?j' =1= 0, which implies j = i by 5). Simi­
larly, Xi' is the only y such that Xo E YOXi. Therefore xiI = Xi' is 
the unique inverse of Xi. 

From 2), we obtain 'l/XEB, eox=xoe={x}. From the previous 
Lemma, it follows that xEyoz:::=} yExoz-1 and zEy-lox. 

We have to verify only the associativity law. 
From 4°) of the previous Lemma, we obtain that Xu E (XiOXj)OXk 

if and only if there exists v, such that PYjP~k =1= O. Similarly, we 
have Xu E XiO(Xj ° Xk) if and only if there exists v, such that 
pfvPjk =1= O. From the equality LPYjP~k = LP'ivPjk (a consequence 

v v 
of 1)) and the Kreim condition, we obtain the associativity law for 
<B,o,e>. 



Chapter 10 

Artificial Intelligence 

Weak representations of an interval algebra are the ob­
jects of interest in the Artificial Intelligence. 

Let us give some words about the Mathematicians who 
worked on this subject. 

Allen [3] defined the calculus of time intervals and Lad­
kin and Maddux [220] showed the interpretation of the cal­
culus of time intervals, in terms of representations of a par­
ticular relation algebra, in the sense of Tarski [178]. They 
proved that there is, up to an isomorphism, a unique count­
able representation of this algebra. 

Ligozat [241] generalized the calculus of time intervals 
to a calculus of n-intervals and presented this generalization 
expressed in terms of relation algebras As. 

Defining canonical functors between the category of weak 
representations of An and those of At, Ligozat [241] ex­
tended the results obtained by Ladkin [219]. 

Finally, it can be seen that the set of (p, q)-positions 
can be endowed with natural operations which give rise to 
a family of quasi-canonical hypergroupoids. 

275 
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§1. Generalized intervals. Connections 
with quasi-canonical hypergroups 

In this paragraph, the notions of a generalized interval and of a 
(p, q)-position are presented. These notions have been introduced 
and studied by G. Ligozat and they have developed the study of 
"interval calculi" used in Artificial Intelligence for representing tem­
poral knowledge. 

It is shown that the set of (p, q)-positions can be endowed with 
natural operations, which give rise to a family of hypergroupoids 
or, equivalently, of relations algebras, in Tarski's sense. 

Let T be a chain and (p, q) E IN* xlN*. 

1. Definition. The element 

(aI, a2, ... , ap ) E TP, 

such that al < a2 < ... < ap , is called a generalized interval 
(or a p-interval). 

An I-interval is just a point of T. For any n E IN*, denote the 
initial segment of IN* : {I, 2, ... , n} by [n); [n) is empty if n = O. 

2. Definition. A map 7r : [p+q) --+ IN*, which verifies the following 
conditions: 

1) the image of 7r is an initial segment of IN*; 

2) the restrictions of 7r at [P) and [p+q) - [P) are strictly increasing 
maps, that is 

7r(1) < 7r(2) < ... < 7r(p) and 7r(p + 1) < ... < 7r(p + q) 

is called a (p, q)-position. 

Let us denote by TIp,q the set of (p, q )-positions. 

3. Examples. 

10 The permutations of {I, 2, ... , p + q}, that verify 2) are posi­
tions, called general positions. 
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2° The position l~,p = (1, ... ,p, 1, ... ,p) is a (p,p) position, called 
unit position. We have l~,p(l)=l, ... , l~,p(p)=p, 1~,p(p+1)=1, 
l~,p(p + 2) = 2, ... 1~,p(2p) = p. 

3) Let "a" be a p-interval and "b" a q-interval in T. Then 
the concatenation of a and b is a sequence of p + q ele­
ments of T. We shall identify [p + q] with the sequence 
(aI, a2, ... , ap , bI , b2, ... , bq ) and 7r can be considered a map from 
the set {aI, ... , ap , bI , ... , bq } into IN*. 

We say that (a, b) is a T-realization of 7r. 

We can generalize the definition of a (p, q)-position for an ar­
bitrary finite sequence (PI, P2, ... , Ps) of natural numbers, obtaining 
thus the notion of (PI,P2, ... ,ps)-position. 

For s = 3, we have the following: 

4. Definition. A (p, r, q )-position 0" is a map 0" : [p + r + q] -t IN* 
such that 

1) the image of 0" is an initial segment of IN*; 

2) the restrictions of 0" at the initial, median and terminal sub­
segments of length p, r and respectively q are strictly increa-
sing maps, that is 0"(1) < ... < O"(p); O"(p + 1) < ... < 
< O"(p + r), O"(P + r + 1) < ... < O"(p + r + q). 

Let IIp,r,q be the set of all (p, r, q)-positions. We can consider 
the canonical projections prp,r : IIp,r,q -t IIp,T> prr,q : IIp,r,q -t IIr,q 
and prp,q : IIp,r,q -t IIp,q; for instance, if 0" E IIp,r,q, T is the re­
striction of 0" at [p + r], and {tI , t2, ... , tk} is the image of T, where 
tl < t2 < .. , < tk, then prp,r(O")(i) = j if and only if T(i) = t j . 

Operations on IIp,q : 

5. Transposition. If 7r E IIp,q, then we can obtain an element 
7rt E lIq,p in the following manner: 

t . _ { 7r(p + i), if 1 ~ i ~ q 
7r(2)- 7r(i-q), if q+1~i~p+q. 
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We have (1I"ty = 11"_ 

Speaking about generalized intervals a and b, the transposition 
changes the position of a by that one of b_ 

6. Symmetry. If 11" E TIp,q, such that 1m 11" = {I, 2, ___ , k}, then 
we obtain 1I"h E TIq,p, where 1I"h(i) = (k + 1) - 1I"(p + q + 1 - i)_ 
Speaking about generalized intervals a and b in T, that corres­
ponds to consider the opposite order on T, so we associate at the 
n-interval (tt, t 2 , ___ , t n ), written according the initial order, the n-
interval (tn, tn-I, ___ , t l ), written according the opposite order. 

Note that the symmetry s = hot is an involution on TIp,q_ 

7. Composition. 

Remark. Let 11"1 E TIp,r and 11"2 E TIr,q' Then the set P={ a- E TIp,r,q I 
(a-(1), a-(2), ___ , a-(p» = (11"1(1), ___ , 11"1 (p» and (a-(p + r + 1), ___ , 
a-(p + r + q» = (1I"2(r + 1), ___ , 1I"2(r + q)} is not empty_ 

Definition. Let 11"1 E TIp,r and 11"2 E IIr,q- Let 11"1011"2 = {prp,q(a-) I 
a- E P} _ We say that 11"1°11"2 is the composition of 11"1 and 11"2-

According to the preceding remark, P is a finite, nonempty set, 
so the composition is well-defined_ Thus, if (a, c) is aT-realization 
of 11"1 and (c, b) is a T-realization of 11"2, then (a, b) is aT-realization 
of one of its elements of 11"1°11"2-

The following properties are easily verified, for any 11"1 E TIp,n 
11"2 E TIr,q and 11"3 E TIq,s : 

8. Proposition. 

1) (11"1°11"2)011"3 = 11"1 o( 11"2011"3); 

2) 11"1 ol~,r = 11"1 and 1~,p01l"1 = 11"1; 

3) I , t d I' t p,p E 11"1°11"1 an r,r E 11"1°11"1; 

4) 11" E 11"1°11"2 implies 11"1 E 1I"01l"~ and 11"2 E 11"1011"; 

5) (11"1 01l"2Y = 1I"~01l"i; 
6) (11"1 01l"2Y = 1I"f0 1l"2-
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Connections with quasi-canonical hypergroups 

In the following, we shall use a notion of simplicial groupoid, con­
sidered by P.J. Higgins [450]. 

First of all, by a groupoid is intended a category in which every 
morphism ( edge) is invertible. Let us see what does it means that 
a morphism is invertible. Denote by Eij the set of edges from the 
object i to the object j. The identity elements ei satisfy the condi­
tion: 

Va E E ij , eia = a = aej. 

Moreover, in a groupoid, for any a E Eij , there is a-I E Eji , such 
that aa-I = ei and a-Ia = ej. 

Notice that the set of edges from an object i to itself is a group, 
called the vertex group at i. 

Now, let I be a set. We denote by 6.(1) the graph, whose vertex 
set is I and whose edge set is I x I. Moreover, V (i, j) E I x I, there is 
a unique edge (i,j) from ito j, hence a category structure on 6.(1) 
can be uniquely defined, namely by the rule (i,j)(j, k) = (i, k). The 
identity elements are the edges (i,j) and (j, i) is inverse to (i,j). 
The groupoid 6.(1) is called a simplicial groupoid. 

Let 6. (IN) be the simplicial groupoid on IN, that is the groupoid, 
whose associated graph has IN as vertex set and for any (p, q) in 
lN2 , there is a unique arrow joining p and q. 

A subgroupoid of 6. (IN) is characterized by the set S of its 
arrows, which is an equivalence relation on a subset I of IN. Thus, 
we shall identify S with the corresponding subgroupoid of 6.(lN). 

Let S be a subgroupoid of 6.(lN) and: 

1) TIs = U TIp,q 
(p.q)ES2 

·f TI TI h {11"1011"2, if q = p' 2) I 11"1 E p,q, 11"2 E p',ql, t en set 11"1·11"2 = 0, otherwise. 

3) Is = {1~,p I (p,p) E S}. 

4) t is the transposition. 



280 PIERGIULIO CORSINI and VIOLETA LEOREANU 

9. Theorem. (ITs,·, Is, t) is a quasi-canonical hypergroupoid. It 
is a quasi-canonical hypergroup if and only if S has only one vertex. 

Proof. S is a subgroupoid if the following conditions are satisfied: 

1) (p,q) E Sand (q,r) E S ==} (p,r) E S; 

2) (p, q) E S ==} (q,p) E S. 

It is easily to check for (ITs,·, Is, t) the conditions of a quasi­
canonical hypergroupoid, using the preceding Proposition. 

Finally, ITs is a quasi-canonical hypergroup if and only if S is 
a group. 

10. Remark. Using the standard construction of the associated 
algebra of complexes, we obtain that for any subgroupoid S of 
~(lN), the complex algebra As of IIs (see Definition 7, Ch. 9) is a 
complete, atomic, relation algebra, such that ° # l. 

If S = {n}, we write An, instead of ~n}. 
The interest for these algebras is justified by the fact that 

the objects utilized in Artificial Intelligence are the "weak­
representations" of these algebras. 

§2. Weak representations of interval 
algebras 

In the following, the notion of weak representation of an interval 
algebra is introduced. G. Ligozat obtained a full classification of 
the connected weak representations of the algebra A.. of n-intervals. 

First of all, let us recall what a relation algebra is. 

11. Definition. An algebra A = (A, +, 0,·,1, *, I', -1), where" +", 
"." and "*" are binary operations on A, "-1,, is a unary operation 
on A and 0, 1, I' are elements of A, is called a relation algebra if the 
following conditions hold: 

1) (A, +, 0,·,1) is a Boolean algebra; 
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2) V(x,y,Z)EA3,(x*y)*z=x*(y*z); 

3) V x E A, I' * x = x = x * I'; 

4) V (x, y, z) E A3, we have: 

(x * y) . z = 0 {::::=:> (x-1 * z) . y = 0 {::::=:> (z * y-1) . x = O. 

12. Example. Let U be a set. Then 

(P(Ux U), U, 0, n, UxU, 0, l uxu , t) 

is a relation algebra, where "0" is the composition, 1uxu is the 
identity relation and "t" is the transposition. 

13. Definition. Let A be a relation algebra and U a set. A map 
II> : A -t P(UxU) is called a representation of A if: 

1) cI> is an one-to-one map; 

2) II> defines a homomorphism of Boolean algebras; 

3) V (x, y) E A2, lI>(x * y) = cI>(x)oll>(y); 

4) cI>(l') = luxu; 

5) 11>(-1) = t. 

More generally, a weak representation is defined by dropping con­
dition 1) and replacing condition 3) by the weaker condition: 

3') V(x,y) E A2, lI>(x*y) 2 cI>(x)ocI>(y). 

If A is a simple algebra, then we say that a weak representation of 
A into P(UxU) is connected if 11>(1) = UxU. 

Now, let 8 be a non-empty subset of IN and TIs be the disjoint 
sum of all TIp,q, where (p, q) E 8 2 • 

In §1, we obtained that (TIs," Is, t) is a quasi-canonical hy­
pergroupoid. Applying to (TIs," Is, t) the standard construction 
which associates with a quasi-canonical hypergroupoid its complex 
algebra (see [46]), we obtain the complex algebra As. 

For 8 = {n}, we obtain the relation algebra An of n-intervals. 



282 PIERGIULIO CORSINI and VIOLETA LEOREANU 

Now, let <P be a connected weak representation of A.. into 
P(UxU), where U is a set, 

Recall that the elements of iln,n can be interpreted as maps 
from the set {Xl, "', Xn, Yb "', Yn} into IN*, 

For any element 11" of iln,n, which can be considered as an atom 
of A.., <P( 11") is a binary relation Rrr on U and we have: 

1) (Rrr )7rETIn ,n is a partition of U x U and 

2) V (11", 11"') E iln,n x iln,n> we have Rrr 0 Rrr, ~ Rrr*7r" 
For 1 ::; i, j ::; n, we consider the following elements of A.. : 

ai,j which is the sum of all 11", such that 1I"(Xi) = 1I"(Yi); 

bi,j which is the sum of all 11", such that 1I"(Xi) < 1I"(Yi)' 

We obtain the following result: 

14. Proposition. 

ai,i 2: I~,n; 
at - a ' i,j - j,i, 

ai,j * aj,k = ai,k; 

ai,j * bj,k * ak,l = ai,6 

bi,j * bj,k = bi,k; 

biJ,·bt .. =O' , 3,'1. , 

bi,j + bL + ai,j = 1; 

if i < j, then I~,n E bi,i' 



Chapter 11 

Probabilities 

Using a particular non-standard algebraic hyperstruc­
ture, A. Maturo [251J proved that the problems on the co­
herent assessments of probability and their solutions can be 
expressed in a very useful and simple form. 

Thus, new algorithms to control the coherence can be 
introduced in this new algebraic context. 

In several of their papers, S. Doria and A. Maturo have consi­
dered some algebraic structures and hyper structures of events and 
contional events. They have studied the properties and the proba­
bilistic meaning of these hyperstructures and they also have consi­
dered their associated geometric spaces. 

We know that conditional events are used in the Artificial In­
telligence to represent partial information and vague data. 

In the following, we present some constructions considered by 
S. Doria and A. Maturo. 

Let E = {El' E2 , ... , En} be a finite family of events. Set 

283 
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1. Definition. We call atoms generated by E, the nonempty inter­
sections Efl E~2 ... E;t, where for Vi E {I, 2, ... , n}, Ef; are defined 
above. 

Let C(E) be the set of all atoms generated by E. 
Let £ be an algebra of events, so the following two conditions 

hold: 

1. if A E £, then A E £; 

2. if (A, B) E £2, then AB E £. 

We define on £ the following hyperoperation 

V(A,B) E £2, AoB = C(A, B). 

Then it follows that: 

2. Proposition. (£,0) is a commutative semihypergroup, called 
semihypergroup of atoms. 

3. Proposition. Let E be a family of events, such that E U {¢, O} 
is an algebra of events. Then E is a substructure of (£,0) if and 
only if the following implication holds: 

¢EE=>OEE. 

Proof. "-{:=" For any (A, B) E (E - {¢, O}) xE, we have 

AoB ~ E - {¢,O}. 

We can have the following situations: 

1. ¢ rt. E and 0 rt. E. In this case EoE ~ E, so (E,o) isa 
substructure of (£, 0); 

2. ¢ rt. E and 0 E E. Then EoE ~ E and 000 = {O}; 

3. ¢ E E and 0 E E. Since 000 = {O} and ¢o¢ = {¢}, it 
follows EoE ~ E. 
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"=::;." If E is a substructure of E and cp E E, then ¢o¢ = {O} 
and so 0 E E. • 

Notice that if E is a substructure, then also E - {cp} and E -
{¢,O} are substructures. 

4. Proposition. Let (E, 0) be a subhypergroup of (E, 0). Then 
'V (A, B) E E2, we have (A ~ B orA ~ B) and(B ~ A orB C A). 

Proof. Indeed, there is Y E E, such that B E AoY, whence B ~ A 
or B ~ A. 

On the other hand, since :JX : A E BoX it follows A ~ B or 
A~B. • 

5. Corollary. Let E be a family of events contained in E. Then 
(E,o) is a subhypergroup of (E, 0) if and only if E = {O} or there 
exists A E E - {¢,O} : E = {A,A}. 

Proof. "¢=" For any A E E - {cp,O}, we have that ({O},o) and 
( {A, A}, 0) are hypergroups. 

"=::;." Let (E,o) be a hypergroup and A, B be two elements of 
E. Since 'V A E E - {O}, it follows cp tJ. E. Suppose 0 E E. Since 
'V A E E - {O}, we have 0 tJ. A 0 0, it follows E = {O}. 

Now, suppose that En {cp, O} = ¢. 
According to the above proposition, it follows 'V A, BEE, we 

have (A ~ B or A ~ B) and (B ~ A or B ~ A). If A ~ B, then 
B ~ A, otherwise A = ¢ and A = 0, a contradiction. Then A ~ B 
implies B ~ A and so A = B. 

Similarly, A ~ B implies B ~ A and so A = B. 
Therefore E = {A, A}. • 

Hyperstructures and conditional events 

Let E be an algebra of events. 
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6. Definition. For any (A, B) E £2, we call the conditional event 
AI B the logical entity, which is true if AB is true, false if A B is 
true and it is undetermined if B is false. 

Notice that the triplet (X, Y, Z) of events represents a condi­
tional event 'if and only if X, Y, Z are pairwise incompatible and 
their union is D. 

Let CE be the set of triplets (X, Y, Z), which represent condi­
tional events. 

Let U = {{A,B} c £ I A ~ B or B ~ A}. 

7. Proposition. The map f : CE ....-? U, defined as follows: 

f(X,Y,Z) = {X,XUY} 

is a bijection. 

Proof. Indeed, for any {A, B} E U, with A ~ B, we have that 
f-l( {A, B}) = {(A, B - A, D - Bn has cardinality 1. • 

In this manner, we can represent any conditional event as an 
element of U. 

Now, let e be an algebra of events. We define on £ the following 
hyperoperation: 

V(A,B) E £2, A0B = {AB,B}. 

The hypergroupoid (£,0) is called the hypergroupoid of conditional 
events and it is denoted by CEH. 

8. Proposition. The hypergroupoid (e, 0) is a weak-commutative 
and a regular weak-associative one. 

Proof. For any (X, Y, Z) E £3, we have 

X 0 (Y 0 Z) ;2 (X 0 Y) 0 Z. 
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Indeed, we have 

X0 (Y0Z) = 
U X 0V = (X0YZ)U(X0Z) = {XYZ, YZ,XZ,Z} 

VEY0Z 

and 

(X0Y)0Z = U T0Z = (XY0Z)U(Y0Z) = {XYZ, YZ,Z}. 
TEX0Y 

Therefore, (£, 0) is a weak-associative hypergroupoid. 
On the other hand, V (X, Y) E £2, X =f Y, we have X 0 Y = 

= {XY, Y} and Y 0 X = {XY,X}. Thus, X 0 Y =f Y 0 X but 
X 0 Y n Y 0 X =f 0. Moreover, V (X, Y, Z) E £3, we have 

(X) X 0 (Y 0 Z) = (X 0 Y) 0 Z U (Y 0 X) 0 Z • 
9. Proposition. Set He £, H =f 0. Then (H, 0) is a substructure 
of (£, 0) if and only if 

VeX, Y) E H2, we have XY E H. 

Proof. "~" VeX, Y) E H2, we have X 0 Y = {XY, Y} ~ H, so 
(H,0) is a substructure. 

"===>" Suppose that (H,0) is a substructure of (£,0). Then 
we have 

V (X, Y) E H2, XY E {XY, Y} = X 0 Y ~ H. • 

10. Corollary. All the conditional events AlB are substructures 
0/(£,0). 

11. Theorem. A substructure (H,0) of(£,0) is a hypergroup if 
and only if H = {X}, where X E £. 
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Proof. "==?" Let (H,0) be a hypergroup. Then (H,0) is a 
quasi-hypergroup, so V (A, B) E H2, 3X E H, 3Y E H such 
that B EX 0 A = {XA,A} and A E Y 0 B = {YB, B}. Since 
B E {XA, A} it follows B ~ A and since A E {Y B, B} it follows 
A ~ B. Therefore A = B and so H consists of an only one element. 

"~" V X E t:, we haveX0X = {X} ~ {X}, so ({X}, 0) is a 
quasi-hypergroup. Moreover, (X0X)0X = X0(X0X) = {X}, 
so ({X}, 0) is a hypergroup. _ 

12. Definition. A weak associative hypergroupoid (H, 0) is called 

(i) left directedifV(x,y,z) E H 3 , xo(yoz) ~ (xoy)oz; 

(ii) right directedifV(x,y,z) E H 3, xo(yoz) "2 (xoy)oz; 

(iii) directed if it is right and left directed. 

The class of left directed (respectively, right directed) weak 
associative hypergroupoids is denoted by LH D (respectively, by 
RDH). 

Let (H,o) be a hypergroupoid. 
If n E IN* and (Xl, X2, ... , Xn) E Hn, then we define the set 

1-l(Xl, X2, ... , xn) of all hyperproducts generated by (xt, X2, ... , Xn) as 
follows: 

and for n > 1, 1-l(Xl, X2, ... , Xn) is the set of all hyperproducts P = 
= Pl 0 P2, where Pl E 1-l(xt, X2, ... , Xh) and P2 E 1-l(Xh+t, ... , xn), 
where h E {I, 2, ... ,n -I}. 

Let (H, 0) be a hypergroupoid. 
Let n E IN* and (Xl,X2, ... ,Xn) E Hn. The right hypeproduct 

p(xt, X2, ... , xn) generated by (xt, X2, ... , Xn) is defined as follows: 
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Similarly, the left hyperproduct A(Xl' X2, ... , xn) generated by 
(Xl, X2, ... , Xn) is defined as follows: 

13. Theorem. Let (H,o) E RDH. Then, for any n E IN*, 
1t(Xl' X2, ... , xn) is a finite lattice, with respect to the inclusion. 

Particularly, (H, 0) is a feebly associative hypergroupoid. 

Proof. We prove this by induction on n. By (*) it follows that the 
theorem is true for n ~ 3. 

Suppose the statement true for any n ~ h, where h ;::: 3. 
Then 'V k E IN, I ~ t < h, we have 

A(XI' ... , Xh, Xh+l) = A(XI' ... , Xh) ° Xh+1 ~ 

~ (A(Xl' ... , Xt) ° A(Xt+b ... , Xh» ° Xh+1) ~ 

~ A(Xl' ... , Xt) ° (A(Xt+1' ... , Xh) ° Xh+l) = 

= A(Xb ... , Xt) ° A(Xt+1' ... , Xh+1) ~ PI ° P2, 

'V PI E 1t(Xl, ... , Xt), 'V P2 E 1t(Xt+b ... , Xh+1). 

Since A(XI, ... , Xh) ° Xh+1 ~ PI ° Xh+1, 'V PI E 1t(Xb ... , Xh) it follows 
that A(Xb ... , Xh+1) is the minimum of 1t(Xl, ... , Xh+1). Similarly, it 
follows that P(Xb ... , Xh+1) is the maximum. _ 

14. Corollary. (e,0) is a feebly associative hypergroupoid. More­
over, "In E IN*, 'V(EI,E2, ... ,En) E en, 1t(E1,E2, ... ,En) is afi­
nite lattice with the minimum A(Eb~, ... , En) and the maximum 
P(Eb E2, ... , En). 

By induction, it follows the following 

15. Theorem. "In E IN*, 'V(EI,E2, ... ,En) E en, we have 

(i) A(E1, E2, ... , En) = {g Es, i E {I, 2, ... , n} } ; 
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n 

(iii) V P E 'H(Eb E2 , •• , En), minP = II Es and maxP = En. 
s=1 

16. Proposition. Let Kl and K2 be two subhypergroupoids of 
(£,0). Then also Kl 0 K2 is a subhypergroupoid. 

(Kl 0 K2)(K1 0 K2) = 

(KIK2 U K2)(K1K2 U K2) ~ KIK2 U K2 = Kl 0 K2. 

Therefore, Kl 0K2 is a subhypergroupoid. -
17. Proposition. ForVn E IN*, V(E1,E2 , ... ,En) E En, every 
P E 'H(El' E2, ... , En) is a subhypergroupoid of (£, 0). 

Proof. We prove by induction. For n = 1, the statement is clearly 
true. 

Let us suppose the statement true for n ::; k and we shall 
verify it for n = k + 1. Indeed, V P E H(El' E2 , .. , Ek+1), 
3s E {I, 2, ... , k}, 3Pt E H(El, ... , Es), 3P2 E H(Es+b ... , Ek+1) 
such that P = PI 0 P2 . By the above proposition it follows that P 
is a subhypergroupoid. _ 

Now, let £ be an algebra of events. 

18. Definition. For any (El' E2 ) E £2, we define 

The hypergroupoid (£, D) is called the hypergroupoid of the atoms 
of conditional events. 
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19. Theorem. (£, D) is a weak associative and a weak commuta­
tive hypergroupoid. 

= EIE2 0 E3 U E2 0 E3 U EIE2 0 E3 = 
= {EIE2E3, E 1E2E3, E 3, E 2E3, E2E3, E 1E2E3, E 1E2E3} and 

= El 0 E2E3 U El 0 E3 U El 0 E2E3 = 

= {EIE2E3,E2E3,EIE2E3,EIE3,E3,EIE3,EIE2E3,E2E3,EIE2,E3}, 

whence (El 0 E2) 0 E3 n El 0 (E2 0 E3) i= 0 

2) For any (El, E2) E £2, we have: El 0 E2 = {El, E 1E2, E 2} 
and E2 0 El = {E1E2, E 2E 1 , Ed, whence El 0 E2 n E2 0 El i= 0 .• 
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