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Introduction

Some mathematical disciplines can be presented and developed in
the context of other disciplines, for instance Boolean algebras, that
Stone has converted in a branch of ring theory, projective geome-
tries, characterized by Birkhoff as lattices of a special type, projec-
tive, descriptive and spherical geometries, represented by Prenowitz,
as multigroups, linear geometries and convex sets presented by Jan-
tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak
did for geometries, in this book we present and study several ma-
thematical disciplines that use the Hyperstructure Theory.

Since the beginning, the Hyperstructure Theory and particu-
larly the Hypergroup Theory, had applications to several domains.
Marty, who introduced hypergroups in 1934, applied them to groups,
algebraic functions and rational fractions. New applications to
groups were also found among others by Eaton, Ore, Krasner,
Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad.
Connections with other subjects of classical pure Mathematics have
been determined and studied:

e Fields by Krasner, Stratigopoulos and Massouros Ch.

e Lattices by Mittas, Comer, Konstantinidou, Serafimidis,
Leoreanu and Calugareanu

e Rings by Nakano, Kemprasit, Yuwaree

e Quasigroups and Groupoids by Koskas, Corsini, Kepka,
Drbohlav, Nemec

e Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra-
sit, Punkla, Leoreanu

e Ordered Structures by Prenowitz, Corsini, Chvalina,
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o Combinatorics by Comer, Tallini, Migliorato, De Salvo,
Scafati, Gionfriddo, Scorzoni

e Vector Spaces by Mittas

Topology by Mittas , Konstantinidou

Ternary Algebras by Bandelt and Hedlikova.

In the 1940’s, Prenowitz represented several kinds of Geometries
(Projective, Descriptive, Spherical) as hypergroups, and later, with
Jantosciak, founded Geometries on Join Spaces, a special hyper-
groups, which in the last decades were shown to be an useful instru-
ment in the study of several matters: graphs, hypergraphs, binary
relations, fuzzy sets and rough sets.

In 1978 Tallini established another link between geometries and
a type of hypergroups he called Steiner hypergroups.

Connections between Hyperstructures and Binary Relations in
the most general meaning, were considered for the first time in
1996, by Rosenberg. Afterwards they were studied also by Corsini,
and by Corsini and Leoreanu (2000), but in special cases Hyper-
structures had been already associated with binary relations, by
Chvalina in 1994 with order relations, by Corsini (2000) and by
Leoreanu (2000 ) with hypergraphs (a setting more general than
symmetric relations), and by Nieminen, Corsini, Rosenberg, with
graphs.

In 1996 Corsini introduced join spaces associated with Fuzzy
Sets. These structures have been studied again by Corsini, Leo-
reanu, Tofan. The ideas of associating a hyperstructure with a
fuzzy set and of considering algebraic structures endowed with a
fuzzy structure, have been brought forward also by several Iranian
scientists as Zahedi, Ameri, Borzooei, Hasankhani, Bolurian.

It is known that Fuzzy Sets, introduced by Zadeh in [429]), are
a powerful tool in several applied sciences (see for instance Dubois
and Prade [137]) and so, in view of the above correspondence, hy-
perstructures could as well be. The same is true for Hyperstruc-
tures associated with Rough Sets (see Corsini [76], Leoreanu [232]).
Rough Sets introduced by Shafer, were analyzed by Pawlak and
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used by him and others as a mathematical tool in studying the
Artificial Intelligence.

There existed till now two books on general theory of Hyper-
structures (one by Corsini [437] on the basic theory of Hypergroups,
the else by Vougiouklis [440], mostly on representations of hyper-
groups and on Hwv-structures, that are hyperstructures satisfying
conditions weaker than the classic ones) and others on particular
sectors and applications.

Another important book for the applications in Geometry and
also for the clearness of the exposition is that one by Prenowitz—
Jantosciak [439].

Finally, we mention certain Doctoral theses, whose reading can
be useful to deeper the knowledge both for the basics and the ap-
plications.

Konguetsof, L. 1964 Paris University, France
Koskas, M. 1967 Paris University, France
Stratigopoulos, D. 1969 Louvain University, Belgium
Mittas, J. 1969 Athens University, Greece
Konstantinidou, M. 1977 University of Thessaloniki, Greece
Sureau, Y. 1980 Université de Clermont II, France
Vougiouklis, T. 1980 Democritus University, Xanthi,
Greece
Ioulidis, S. 1981 University of Thessaloniki, Greece
Serafimidis, Ch. 1983 University of Thessaloniki,
Greece
Freni, D. 1985 Université de Clermont II, France
Massouros, Ch. 1988 Technical University of Athens,
Greece
Spartalis, St. 1990 Democritus University, Xanthi,
Greece

Yuwaree, Punkla 1991 University of Chulalongkorn,
Bangkok, Thailand

Massouros, G. 1993 Technical University of Athens,
Greece

Gutan, C. 1994 Université de Clermont II, France
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Dramalidis, A. 1996 Democritus University, Greece

Yatras, C. 1996 Democritus University, Greece
Hasankhani, A. 1997 Shahid Bahonar Univ. of Kerman, Iran
Ameri, R. 1997 Shahid Bahonar Univ. of Kerman, Iran
Moueka, J. 1997 Military University of the Ground Forces

Vykov/ Masaryk University, Brno

Leoreanu, V. 1998 ”Babeg Bolyai” University, Cluj-Napoca,
Romania

Hort, D. 1999 Faculty of Education, Masaryk
University, Brno

Borzooei, R.A. 2000 Shahid Bahonar Univ. of Kerman, Iran

By this book we present some of the numerous applications of
hyperstructures, especially those from the last fifteen years, to the
subjects:

Some topics of Geometry

Hypergraphs and Graphs

Binary Relations

Lattices

Fuzzy Sets and Rough Sets

Automata

Cryptography

Codes

Median Algebras, Relation Algebras, C-Algebras

Artificial Intelligence

Probabilities
This work, a survey of the most recent applications of Hyper-
structure Theory, is based on many papers, some of which contain
more detailed presentation. We hope this book will get a progress
of science through a study in depth of these applications.
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Basic notions and results
on Hyperstructure Theory

The most important notions and results, obtained on Hyperstruc-
ture Theory, are presented here. For more details, see [437).

Let H be a non—empty set and denoted by P*(H) the set of
all non—-empty subsets of H.

1. Definition. A n-hyperoperation on H is a map f : H® —
— P*(H). The number n is called the arity of f.

2. Definition. A set H, endowed with a family I of hyperopera-
tions, is called a hyperstructure (or a multivalued algebra).

3. Definition. If T is a singleton, that is I' = {f} where the arity
of f is 2, then the hyperstructure is called a hypergroupoid.

»_n
o

Usually, the hyperoperation is denoted by and the image of
the pair (a,b) of H? is denoted by aob and called the hyperproduct
of a and b.

If A and B are non—empty subsets of H, then Ao B = | J aob.

aEA
beB

4. Definition.
(i) A semihypergroup is a hypergroupoid (H, o) such that
V(a,b,c) € H3, (aob)oc = ao(boc).
(ii) A quasthypergroup is a hypergroupoid (H,o) which satisfies
the reproductive law:
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(%) Va € H, Hoa =aoH = H.
(iii) A hypergroup is a semihypergroup which is also a quasihyper-
group.

5. Definition. Let (H, o) be a hypergroupoid. An element e € H
is called an identity or unit if

Va € H, a € aceneoa.

6. Definition. Let (H, o) be a hypergroup, endowed with at least
an identity. An element a’ € H is called an inverse of a € H if
there is an identity e € H, such that

e € aoa’ Nad’oa.

7. Remark. Sometimes, more general structures are considered,
for instance the Wall-hypergroup (see [423]) of dimension n, which
is a non-empty set H, endowed with a hyperoperation ”o”, such
that for any (a,b) € H?, the hyperproduct aob is a set of n elements
of H, not necessarily distinct elements. Moreover, the associativity
law is valid, there is at least one identity and any element has an
inverse in a Wall hypergroup.

8. Definition. We say that two binary hyperoperations < o; >,
< oy > on the same set H are mutually associative (m.a.) if
V(z,y,z) € H®, we have

(zxo1y)ogz=1x01(yoy2) and
(zogy)o1z=1x0(yo;2).

We also say that the pair ((H, o1 ), (H, 02)) is m.a.

The mutual associativity of two hyperoperations has been in-
troduced by P. Corsini. In [73], he has started to investigate the
problem of determining pairs of finite quasihypergroups which are
mutually associative (m.a.).
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9. Definition. A semihypergroup (H, o) is called simplifiable on
the left if: V(z,a,b) € H3, zoaNzob# P =>a=0b.

Similarly, we can define the simplifiability on the right.

F. Marty [248] proved that any hypergroup simplifiable on the
left (or on the right) is a group. Later, M. Koskas [213] gave a
simplier proof for the same result.

In [227] it is proved the following:

10. Theorem. Let (H,o) be a semihypergroup such thatVt € H,
toH = H and dsg € H, Hosy = H.

(1) If H is simplifiable on the left, then H is a group;

(i1) If H s simplifiable on the right, then H is a group.

11. Definition
H is said to be of type C on the right (see [383]) if Je € H,
called a scalar identity on the right, such that:
1) Vx € H, zoe=2x
2) V(z,y,2) € H3, zoyNzoz # ) = eoy = eoz.

Relation § and quotient hypergroupoids

Let (H, o) be a hypergroupoid and let p be an equivalence relation
on H.

12. Definition. We say that p is regular on the right if the fol-
lowing implication holds:
apb=Vu € H, Yz € aou, 3y € bou : zpy and
Vi € bou, IT € aou : Tpy

Similarly, the regularity on the left can be defined .
We say that p is regular if it is regular on the right and on the left.

13. Definition. We say that p is strongly regular on the right if
the following implication holds:

apb==VYu € H, Vx € aou, Vy € bou : zpy.
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Similarly, the strong regularity on the left can be defined.
‘_ We say that p is strongly reguler if it is strongly regular on the
right and the left.

14. Definition. Let (H,o) be a hypergroupoid. We define the
relation 8 on H, as follows:
n
afb <> In € N*, I(z1,22,...,2,) E H" :a € Hx,- EX
i=1
Notice that [ is a reflexive and a symmetric relation on H, but
generally, not a transitive one.

Let us denote by * the transitive closure of 5.
The following results hold:

15. Theorem. If (H,o) is a hypergroupoid, then 3* is the smallest
equivalence strongly regular on H, with respect to the inclusion.

16. Theorem. If H is a hypergroup, then B* = (3.

17. Notation. V(a,b) € H? a/b={z | a € zob} and b\a = {y |
a € boy}.

18. Definition. Let (H,o0) and (K, *) be hypergroupoids and
f: H— K. We say that:
(i) f is a homomorphism if V(a,b) € H?, f(aob) C f(a) * f(b);
(i) f is a good homomorphism if V (a,b) € H?,
f(acb) = f(a) * f(b);
(iii) the homomorphism f is strong on the left if
f(c) € f(a) * f(b) = 3a" € H : f(a) = f(a') and ¢ € a’ob.
Similarly, we can define a homomorphism, which is strong on the
right.
If a homomorphism f is strong on the right and on the left, we
say that f is a strong homomorphism.
(iv) f is a very good homomorphism if f is a good homomor-
phism and moreover, V(z,y) € H?, f(z/y) = f(z)/f(y) and

f(@\y) = f(x)\f(y).
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Now, some basic results about quotient hypergroupoids are
presented.

19. Theorem. Let (H,o) be a semihypergroup and p an equiva-
lence relation on H.
(i) If p s regular, then H/p is a semihypergroup, with respect to
the following hyperoperation:
V(z,9) € (H/p)*, T®F={z] z € zoy}.

(ii) Conwversely, if the hyperoperation "®” is well-defined on H/p,
then p is regular.

(iii) In the above-mentioned hypothesis, the canonical projection
m:H—H/p is a good epimorphism and if (H,o) is a hyper-
group, then (H/p,®) is also a hypergroup, denoted by H/p.

20. Theorem. Let (H,o) be a semihypergroup and p a strongly
regular equivalence relation on H. Then:
(i) H/p is a semigroup;
(ii) of H is a hypergroup, then H/p is a group;
(iii) #f S is a semigroup and f : H — S is a homomorphism,
then the equivalence relation R associated with f, as follows
aRb <> f(a) = f(b), is strongly regular.

21. Corollary. If (H,o) is a hypergroup, then H/3 is a group.
Moreover, B is the smallest equivalence relation p on H, such
that H/p is a group.

Complete parts, subhypergroups and the heart
of hypergroup
22. Definition. Let (H,o) be a semihypergroup and A a non—

empty subset of H. We say that A is a complete part of H if the
following implication holds:

Vn e IN*, V(zy,...,z,) € H", Hz,-ﬂA# = Hx,- C A

i=1 i=1
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23. Definition. If (H, o) is a semihypergroup and A C H, A # 0,
then the complete closure of A in H is the intersection of all the
complete parts of H, which contain A. It will be denoted by C(A).

Some basic results concerning C(A) :

24. Theorem. Let (H,o) be a semihypergroup and A C H, A # 0.
We consider Ko(A) = A andVn € N,

i=1

P
K,1(4) = {aGH | IpeN*, 3(zy,...,z,) €HP :a€[[ z: and
14
i=1
Let K(A) = | J K™(A). Then C(A) = K(A).
nelN
Let (H, o) be a semihypergroup.
25. Theorem.
(i) The relation K defined as follows

aKb <=z € C({y})

15 an equivalence relation on H.

(1) V(a,b) € H?, we have aKb <= af3*b.

26. Theorem. If A is a non—-empty subset of a semihypergroup
(H, o), then C(A) = | JC(a).
acA
The following theorem characterizes the semihypergroups for
which the relation 3 is transitive.

27. Theorem. ([152] and Th.47, Ch.3) Let H be a semihyper-
group. The relation B is transitive in H if and only if Vz € H,
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Let oy : H— H/( be the canonical projection.

28. Definition. The heart of a hypergroup H is wy = {z € H |
wu(z) = 1}, where 1 is the identity of the group H/f.

29. Theorem. If A is a non-empty subset of a hypergroup H,
then C(A) = Aowy = wyoA.

30. Corollary. If A and B are non-empty subsets of a hypergroup
(H, o), such that one of A and B is complete, then AoB and BoA
are complete parts.

31. Definition. Let (H, o) be a hypergroupoid and A a non-empty
subset of H. We say that

(i) A is reflexive in H if V (z,y) € H?, from zoy N A#Q it follows
yox N A#D;

(ii) A is invariant (or normal) in H if Vz € H, we have z0A =
= Aozx.

(iii) A is invertible on the left in H if V (z,y) € H?, the following
implication holds: y € Aoz = z € Aoy.

Similarly, we define the invertibility on the right. We say that A is
invertible if it is invertible on the right and on the left.

32. Definition. Let (H,o) be a hypergroupoid and K a non-
empty subset of H.

K is called a subhypergroupoid of H if KoK C K. A subhyper-
groupoid

K of H is called a subhypergroup of H, if (K, o) is a hypergroup.

Now, we define some important types of subhypergroups:

33. Definition. Let (H,o) be a hypergroup and K a subhyper-
group of it. We say that:



8 PIERGIULIO CORSINI and VIOLETA LEOREANU

(i) K is closed on the left in H if Va € H, V¥ (z,y) € K?, from
z € aoy follows a € K.

Similarly, we can define the notion closed on the right.
K is closed in H if it is closed on the right and on the left.

(ii) K is ultraclosed on the left in H if Vz € H,
Koz N (H — K)oz # 0.

Similarly, we can define the notion ultraclosed on the right.
K is ultraclosed if it is ultraclosed on the right and on the left.

We characterize ultraclosed subhypergroups:

34. Theorem. Let (H,o) be a hypergroup, I, the set of partial
identities, that is I, = {e € H |3z € H : z € eox U zoe}.

Let K be a subhypergroup of H.

K is ultraclosed if and only if it is closed and contains I,.

35. Definition. Let (H, o) be a hypergroup and K, K5 subhyper-
groups of H. We say that K, is Kj—conjugable if the following
conditions hold:

1) K=K NK,#;

2) K> is closed in H;

3) Vz € K;, 32’ € K; such that 2’0oz C K.

The following characterization holds:

36. Theorem. A subhypergroup K of a hypergroup H
is a complete part of H if and only if K is H—-conjugable.

We state some connections between complete parts, invertible,
closed, ultraclosed subhypergroups:

37. Theorem. Let (H,o) be a hypergroup and K a subhypergroup
of H. The following statements hold:
(1) if K is a complete part of H, then K is ultraclosed in H;



APPLICATIONS OF HYPERSTRUCTURE THEORY 9

(i) #f K is ultraclosed in H, then K is invertible in H;
(i) #f K s invertible on the right (on the left)in H, then K is
closed on the left (on the right)in H.

38. Theorem. If K is a subhypergroup and a complete part of a
hypergroup H, then K is invariant in H if and only if it is reflexive
in H.

39. Remark. In [437, pp.52-53] examples are given of non—
closed subhypergroups, ultraclosed but not complete parts sub-
hypergroups, invertible but not ultraclosed subhypergroups, closed
but not invertible subhypergroups.

40. Theorem. The heart of a hypergroup H is the intersection of
all subhypergroups of H, which are complete parts.

41. Definition. The intersection of all ultraclosed subhypergroups
of a hypergroup H is called nucleus of H.

By C.U. it is denoted the class of hypergroups, whose ultra-
closed subhypergroups are all complete parts.

Several important classes of hypergroups

I. Regular hypergroups, complete hypergroups
and canonical hypergroups.

42. Definition. A hypergroup H is regular if it has at least one
identity and each element has at least one inverse.

A regular hypergroup (H,o) is called reversible if for any
(z,y,2) € H?, it satisfies the following conditions:

1) if y € aoz, then there exists an inverse a’ of a, such that
x € d'oy;

2) if y € zoa, then there exists an inverse a” of a, such that
x € yoa”.
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If H is regular, we denote by E the set of identities of H and
for any a € H, by i(a) the set of inverses of a.

43. Theorem. If H is a regular reversible hypergroup and {A;}icr
is a family of its invertible subhypergroups, then A = ﬂAi is an
invertible subhypergroup. i€l

In [437, p. 63] it is presented an example of regular hypergroup,
which is not reversible.

44. Definition. A semihypergroup(H, o) is called complete if
V(z,y) € H?, C(zoy) = zoy,

where C was defined in 23.
Some results about the complete hypergroups:

45. Theorem. A semihypergroup H is complete if H = | A,

seS
where S and As satisfy the conditions:

1) (S,0) is a semigroup;
2) V(s,t) € 5% s#t, we have A, N A; = 0
3) if (a,b) € A;x Ay, then aob = Ag.

46. Theorem. If H is a complete hypergroup, then
1) wy is the set of identities of H and
2) H is a regular reversible hypergroup.

47. Definition. A hypergroup H is flat if for any subhypergroup
K of H, the following equality holds: wg = wg N K.

48. Theorem. Every complete hypergroup is flat.

49. Theorem. Let H be a regular reversible hypergroup. If A is a
closed subhypergroup, then A is invertible.

50. Theorem. Let f : H — H' be a very good epimorphism of
hypergroups and let K be a subhypergroup and a complete part of
H. Then f(K) is a complete part and a subhypergroup of H'.
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51. Theorem. If f : H — H’ is a very good epimorphism between
hypergroups, then f(wy) = wyr.

52. Theorem. If H and H' are complete hypergroups and
f:H — H' is a good homomorphism, then f is very good.

53. Definition. We say that a hypergroup H is canonical if
1) it is commutative
2) it has a scalar identity
3) every element has a unique inverse
4) it is reversible.

54. Remark. Not all subhypergroups of a canonical hypergroup
are canonical (see Th. 200 [437)).

Let (H,+) be a canonical hypergroup and z € H. For any
n € Z, we define

z+z+---+x , f n>0
e e’
n times
nr = 0 , if n=0
(=2)+---+(=a) , i n<O,
(—n)vtimes

where Vz € H, we denote by ”—z” the inverse of z.
We can verify that

(m+n)z, if mn>0

I = { (m + n)z +min{|m|, |n]} - (z — z), if mn<0.

55. Definition. Let (H,+) be a canonical hypergroup and z € H.
We say that the order of = is infinite (o(z) = oo) if V (h, k) € Z?,
where h # 0, we have 0 ¢ hx + k(z — z).

56. Theorem. Let (H,+) be a canonical hypergroup and z € H.
Then o(z) = oo if and only if V(m,n) € Z*, m # n we have
mz Nnz = (.
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57. Definition. Let (H,+) be a canonical hypergroup. Let
us suppose that there exists (m,n) € ZxIN, m # 0, such that
0 € mz +n(z — ).

Let h=min{r e N* | 3n € N : 0 € rz +n(z — z)}. The
number h is called the principal order of x.

58. Theorem. Let (H,+) be a canonical hypergroup and x € H.
We have 0 € mz + n/(z — z) if and only if ord x divides m.

59. Definition. Let h divide m and ¢ = min{s € IN* | mz +
+s(z — ) 3 0}. The couple (h, q) is called the order of .

60. Definition. A canonical hypergroup (H,+) is called strongly
canonical if it satisfies the following conditions:

1) V(z,a) eH?, z€z+a=z=1+q;
2) (z+y)Nz+w)#d=2z+yCz+worz+wCz+y.

I1. Join spaces.

61. Definition. A commutative hypergroup (H, o) is called a join
space if V (a, b, c,d) € H*, the following implication holds:

a/bnec/d # 0 = aod Nboc # P.

If A and B are subsets of a hypergroup H, we denote by A/B the
set | Ja/b.

ac€A
beB

62. Theorem. A commutative hypergroup is canonical if and only

if it is a join space with a scalar identity.

63. Theorem. A is a closed subhypergroup of a join space H if
and only if AJA = A.

64. Theorem. Let A, B, C, D be non-empty subsets of a join
space (H,o). We have:
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1) f AC B and C C D, then A/C C B/D;

2) ANB/C # 0 if and only if Ao C N B # {;

3) A/(BoC) = (A/B)/C;

1) A/(BJC) C (Ao C)/B;

5) Ao(B/C)C (Ao B)/C;

6) BC A/(A/B).
65. Definition. A join space H is called geometricif Vz € H, we
have zoz = {z} = z/z.

66. Definition. For a closed subhypergroup N of join space H and
(z,y) € H?, we write zJyy if zoN NyoN # 0.

67. Theorem. The relation Jy is an equivalence relation. The
equivalence class of a € H is (a)y = (aoN)/N = N/(N/a). In
particular, VX €N, (z)y = N.

68. Theorem. If H is a join space and N is a closed subhyper-
group of H, then the equivalence relation Jy is reqular and the
quotient H/Jy is canonical.

69. Theorem. ([312]) The following statements (concerning the
canonical hypergroup (H/Jy,®)) hold:

1) the identity element is N and Vn € N, we have (n)y = N;
2) (a')n is the inverse of (a)n if and only if NNaoa' #;
3) if (a’)n is the inverse of (a)n, then (a’')ny = N/a.

If Ay, As, ..., A, are subsets of a hypergroup, we denote by
n

< Ay, ..., A, > the closed subhypergroup generated by UAi.
i=1
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70. Theorem. If H is a join space and A is a subhypergroup of
H, then A is ultraclosed if and only if it is a complete part of H.

Let (H, o) be a hypergroup. Let us denote
I,={e€ H|3z € H:z € eoxUzoe}.

For n € IN*, set

I::IPO---OIP.
R —

n times

We obtain:

71. Theorem. Let (H,o) be a join space. Then

wn= U (/).

nelN*

72. Definition. Let H be a join space. If H has a scalar identity
e, we set E = {e}, otherwise E = ).

Furthermore, we define

P> = E and if A € P*(H), <A> =< A>.

73. Definition. A join space H is called an exchange space if it
satisfies the following conditions:
(I) if a € <br>, a ¢ E, then <ab> = <1bb>;
(IT) if ¢ € <a,b>> and ¢ ¢ <br>, then <ic, b> = <1a,b> .

For an exchange space, < > will mean < .

74. Theorem. If A and B are non-empty subsets of a join space,
such that < A>N<B>#0, then < AL B>=<A>/<B>.

75. Theorem. Let H be a join space with a scalar identity e.
Then H satisfies (1) if and only if it satisfies (II).
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76. Definition. Let A be a subset of a join space H. A is called
independent if Va € A, we have a ¢< A — {a} > .

77. Definition. A subset A of a closed subhypergroup S of a join
space H is called a basis of S if it is independent and furthermore
<A>=S8.

78. Theorem. Let A be a subset of an exchange space H, and
let (x,y) € H?. Ify €< A,z > andy ¢< A >, then < A,z >=
=< Ay>.

79. Theorem. All complete commutative hypergroups are join
spaces, but there are commutative regular reversible hypergroups,
which are not join spaces.

II1I. Quasi—canonical Hypergroups. Cogroups.

Let (H, o) be a hypergroup and z € H.

We denote by i,(x) the set of ' € H such that e € 2oz} for a
left identity e and by i,(z) the set 2”7 € H such that e € zoz"} for
a right identitye.

We also denote by i(z) the set of all inverses of .

80. Definition. A hypergroup H is called feebly quasi—canonical
if it is regular, reversible and satisfies the condition:

V(z,a)€ H?V {u,v} C i(z),V{w, 2} C i,(z), uoa=voa, aow=aoz.

If H is also commutative, we say that H is feebly canonical.
We denote by F.Q.C. and by F.C. the classes of feebly quasi—
canonical, respectively feebly canonical hypergroups.

81. Theorem. Let H € F.Q.C. and K be a subhypergroup of H.
Then K is ultraclosed if and only if it is a complete part of H.

82. Theorem. Let H € F.QQ.C. Then the following conditions are
equivalent:
a) Vz € H, cardi(z) = 1;
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b) H has ezactly one identity, which is a scalar.

83. Definition. A hypergroup in F.Q.C., satisfying the equivalent
conditions a) or b) of the above theorem, is called quasi—canonical

(or a polygroup).
We denote by Q.C. the class of quasi—canonical hypergroups.
Clearly, the canonical hypergroups are the commutative quasi—
canonical hypergroups.

Let (H,o) be a feebly quasi-canonical hypergroup and let R
be the following relation on H: zRy <= 3z € H : {z,y} C i(2).

84. Theorem.

(i) The relation R is a regular equivalence relation.

(ii) The quotient H/R is a hypergroup, with respect to the hyper-

operation @7 =1{z7| 2 € zoy}.

Moreover, the canonical projectionp : H — H/ R is a good epimor-
phism.
85. Theorem. If H € F.Q.C., then H/R is quasi—canonical.

86. Theorem. The following conditions are equivalent for
HeFQC.

(i) H is complete
(ii) wy is the set of identities of H
(i) H/R is a group.

87. Definition. A weak left cogroup is a regular reversible hyper-
group (H, o), endowed with a left scalar identity "e” and satisfying
zoy N zoy # @ = x € zoe.

A weak left cogroup is called a left cogroup if it also satisfies
V(z,y,2) € H3, card(woy) = card(zoz).
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Let (H, o) be a weak left cogroup with a left scalar identity e.
The following relation R defined on H: 2Ry <= z € yoe is an
equivalence relation.

88. Theorem. The quotient H/R endowed with the structure
aoce ® boe = {voe | v € aob} is a quasi-canonical hypergroup.

89. Theorem. Let H be a subhypergroup of a cogroup C. Then
(i) H is an invertible part of H and a subcogroup of C;
(ii) #f card C < Xy, then the order of H divides the order of C.

90. Definition. A partial hyperalgebraic structure < H,o,I, ! >
is called a quasi—canonical hypergroupoid if "o” is a partial binary
hyperoperation on H, i.e. a map from H? into P(H), I C H and
~1 is a unary operation on H, such that the following conditions
hold for any (z,y,2) € H?:

1) (zoy)oz = zo(yoz), which should be interpreted as follows: if
either side is non—empty, then both sides are non—empty and
the sets are equal.

2) zol = Ioz = z;

3) T €Eyoz <=y € roz ! & 2z € yloz.

Quasi—canonical hypergroupoids are also called polygroupoids.
They were introduced by S. Comer and correspond to the atom
structures of systems of relations. Comer generalized polygroupoids
to partial multi-valued loops.

IV. Cyclic hypergroups.

91. Definition. A hypergroup H is called cyclic with a generator
z if py(H) is a cyclic group generated from @y (z).

92. Definition. An element x of a hypergroup H is called periodic
of period p(z) = n if 2 C wy and n = min{k € N | z*¥ C wy}.

93. Definition. A semihypergroup H is called s-cyclic with s-
generator h € H if for all z € H we have z € h" forsome n € IN.
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94. Theorem. If H is a cyclic and complete hypergroup, then it
1s commautative.

95. Definition. If H is an s-cyclic semihypergroup with s-
generator h, we call the cyclicity of a € H the integer

m =min{g € IN* — {1} | a € h?}.
We write cycl(a) = m.

96. Theorem. A cyclic and complete semihypergroupis a join

space.

97. Theorem. If H is a cyclic and complete hypergroup and h is
T

its s-generator, such that cycl(h) =r, then H = P n".
t=2

98. Theorem. Every hypergroup < H,o > is embeddable in a
cyclic hypergroup < K,® >, with wg = H.

V. Kp-hypergroups.

99. Definition. Let < H, o> be a hypergroupoid and let { A(z)}.en

be a family of pairwise disjoint non—empty sets.Let Ky = | J A(z)
zeH

and let us define

Va € Ky, g¢g(a) =z <= a€ A(z).
We define in K the hyperoperation:
V(a,b) € K, amb= |J A(z2).

2€g(a)og(b)

100. Theorem.
1) (H,o) is a semihypergroup if and only if < Ky,0 > is a
semihypergroup;
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2) (H,o) is a hypergroup if and only if < Ky,0 > is a hyper-
group.

101. Notation. For any P € P*(H), set K(P) = | J A(z).
zeP

102. Theorem.
1) E(Ky) = K(En);
2) Ya € Ku, i(a) = K(i(g(a))) = 97 (i(g9(a))).

103. Theorem.
1) If P is a complete part of < H,o >, then K(P) is a complete
part of < Kyg,o >.
2) If P is a non-empty part of a semi-hypergroup H, then P is
a subhypergroup of H if and only if K(P) is a subhypergroup
Of KH.

104. Theorem. V(z,y) € H? V(u,v) € A(z)xA(y), if uBk,v
then z(gy.

105. Theorem. If H is a hypergroup, then wk,, = K(wg).

106. Theorem. If H is a hypergroup, then:
1) < Ky,o > is regular if and only if (H, o) is regular;
2) < Ky,o > is reversible if and only if (H,o) is reversible;
3) < Ku,o > is feebly quasi—canonical if and only if (H,o0) is
feebly quasi—canonical.

Hyperrings, hypermodules and vector
hyperspaces

107. Definition. A (Krasner) hyperring is a hyperstructure
< A,+,-,0 > where:
1) (A,+) is a canonical hypergroup;
2) (4,-) is a semigroup endowed with a two-sided absorbing
element 0;
3) the product distributes from both sides over the sum.
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108. Definition. A hyperfield is a Krasner hyperring (K, +, -, 0),
such that (K — {0}, -) is a group.

109. Definition. Let z be an element of a hyperring A. If
o(x) = oo, we say that the characteristic of x is zero and we set:
X(z) = 0. If o(z) # oo, we set X(z) = h, where h is the principal
order of z in the canonical hypergroup < A4, + > .

110. Definition. We call the characteristic X(A) of A the least
common multiple (¢.c.m.) of X(x) for z € A if it exists and is # 0,
otherwise we set X(A) = 0.

111. Remark. If y = az, then X(y) divides X(z).

112. Definition. If < A, +,- > is a hyperring and B is a non—
empty subset of A, we say that < B,+,- > is a subhyperring of A
if:
(B,+) is a canonical subhypergroup of < A,+ > and (B, ")
is a subsemigroup of (4, -).
We say that B is a left hyperideal of A if (B,+) is a canonical
subhypergroup of A and A- B C B.

Similarly, we can define the notion of right hyperideal and of
the two—sided hyperideal of A.

113. Proposition. The heart wa of < A,+ > is a hyperideal of
< A', +7 * > .

114. Proposition. Let A and B be respectively a hyperring and a
two-sided hyperideal of A. If in the quotient A/B = (A,+)/(B,+)
we set (z + B)(y + B) = zy + B, then the structure (A/B,+,") is
a hyperring.

115. Definition. Let A be a hyperring. We say that < M,+,0 >
is a right A~hypermodule if

1) (M,+) is a canonical hypergroup;



APPLICATIONS OF HYPERSTRUCTURE THEORY 21

2) o is a scalar single-valued operation, that is a function which
associates with any pair (z,a) € M x A an element zoa € M,
such that V (z,y) € M2,V (a,b) € A2, the following conditions
hold:

1°. (z + y)oa = zoa + yoa;

2°. zo(a + b) = zoa + zob;

3°. zo(a - b) = (zoa)ob;

4°. 200 = 0.
If A is endowed with a unit 1, M is called unitary if Vo € M,
zol = z.

116. Definition. If K is a hyperskewfield, then a right unitary
hypermodule < V| 4+, 0 > is called K—vectorial hyperspace.

117. Definition. If M and M’ are right A-hypermodules (where
A is a hyperring) and f : M — M’ is a map, we say that f is
a homomorphism if: V(z,y) € M?, f(z +y) = f(z) + f(y) and
V(z,a) € MxA, f(zoa) = f(z)oa.

118. Proposition. Let M be a right A hypermodule and N a
subhypermodule of M (that is a canonical subhypergroup such that
Va€ A, Noa C N). If we set V(z,y) € M?, 2Ry <> .+ N =
= y + N and we define on the quotient M/R, ¥ (z,y) € M?,
(z+M)+(y+N)={v+N |vez+y},Va € A, (x+N)oa = zoa+N,
then we obtain on M/R (denoted by M/N) a structure of right hy-
permodule.

H,-structures

One of the topics of great interest, in the last years, is the study
of weak hyperstructures, so-called H,—structures. The class of H,—
structures is the largest class of algebraic hyperstructures.

These structures satisfy weak axioms, where the non—empty
intersection replaces the equality.

This topic was introduced in 1990 by Vougiouklis ([413]) and
studied by himself and then by R. Migliorato and their students. R.
Ameri has introduced the categories of H,—groups and H,-modules.
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Vougiouklis abbreviated the weak associativity by wAss and
the weak commutativity by cow.

119. Definition. A hypergroupoid (H,-) is called an H,—group if
the weak associativity is satisfied, that is:

(a) V(z,y,2) EH’, z-(y-2)N(xz-y)-2#0
and also the reproductive axiom holds:
VreH, x-H=H-xz=H.
A hypergroupoid which satisfies only («) is called H,-semigroup.

120. Definition. Let (Hy,-) and Ha, %) be two H,-groups. A map
f : Hy — H, is called a weak homomorphism if:

V(z,y) € H, f(z-y) N f(z)* fly) #0.

Let (H,-) be an H,-group. The relation $* is the smallest
equivalence relation on H, such that the quotient H/(* is a group.

It is called the fundamental group and 3* is called the funda-
mental equivalence relation on H.

The relation g is defined on an H,-group in the same way as
in a hypergroup.

Finally 8* is the transitive closure of (3.

121. Definition. An H,-group (H,o) is called an H,-group if
there exists a group operation ”-” on H, such that V (z,y) € H?,
wehavez-y €z oy.

122. Definition. An H,-ring is a hyperstructure (R, +, -), where
both hyperoperations ”+” and ”-” are weakly associative, ”-” weakly
distributed over ”+” from both sides and ”+” is reproductive.

Let U be the set of all finite polynomials of elements of R
over IN.
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Let us define the relation 7y on R, as follows:
zyy <= Ju € U, such that {z,y} C u.

Let «* denote the transitive closure of +.

Note that * is the smallest equivalence relation on R such that
the quotient R/v* is a ring.

The relation * is called the fundamental relation of R and

is the main tool for the study of H,-rings.

123. Definition. The H,-ring (R, +, ") is called an H,—field if the
ring R/v* is a field.

Let us denote by w* the kernel of the canonical map

m:R— R/y".

124. Definition. An H,ring (R,+,") is called a reproductive
H,—field if the following condition holds:

VieR-w", z-(R-w)=(R-w")-z=R—w"

The importance of the reproductivity with respect to the hyper-
operation ”-” consists in the representations in the diagonal form.

125. Definition. A matrix whose entries are elements of an H,-
ring is called H,-matriz.

H,-matrices have been especially studied by Vougiouklis.

126. Definition. A cow group (M, +) is called a left H,-module
over an H,-ring R, if for every o € R there is a map (a,z) — az
from RxM into P*(M) such that V(a,b) € R2, V(z,y) € M?, we
have

a(z +y) N (az + ay) # 0;

(a+bdznN(az+bz) #0

(ab)z Na(bz) # 0.
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The fundamental relation €* in M over R is the smallest equivalence
relation on M, such that M/c* is a module over the ring R/vy*.

€* is constructed as follows:

Let (M,+) be an H,-module over an H,-ring R. Let U be the
set of all expressions consisting of finite hyperoperations either on
R and M or the external hyperoperation applied on finite sets of
elements of R and M.

Define a binary relation € on M by:

zey <= Ju € U, such that {z,y} Cu

and denote by €* the transitive closure of the relation €.
In the fundamental module (M /e*, ®, ®) over R/v*, the hyper-
operations @ and ® are defined as follows:

V(z,y)€M?, e*(z) ®e*(y) = €*(2) for any z€£*(z) + *(y)
Va € R, VzeM, v*(a) ®e*(z) = £*(2), for any z€7*(a) - e*(x).

Definition 127. An H,-semigroup (H, -) is called h/v-group if the
quotient H/B3* is a group.

Remark 128. In a similar way as above, the h/v-tings, h/v-fields,
h/v-modulus, h/v—vector spaces are defined. These structures has
been studied by T. Vougiouklis.



Chapter 1

Some topics of Geometry

e Several branches of geometry can be treated as certain
kinds of hypergroups, known as join spaces. Introduced by
W. Prenowitz and studied afterwards by him together with
J. Jantosciak, the concept of a join space is "sufficiently
general to cover the theories of ordered and partially or-
dered linear, spherical and projective geometries, as well as
abelian groups”.
o If we consider a spherical geometry and identify antipodal
points, we obtain a projective geometry. This construction
can be described in the context of join spaces as follows:
Let J be the set of points of a spherical join space and
for any a € J, let @ = {a,a”'}. Let J = {a | a € J}. We
define on J the following hyperoperation:
dgob={z|zeca- b},

”»on

where is the hyperoperation of the spherical join space.

Theorem. (see [168]) (J,0) is a projective join space, such
thatVa € J, aoa = a/a = {e,a}, where & is the identity.

The results of §1, §2, §3 of this chapter are due to W. Prenowitz
and W. Prenowitz—-J. Jantosciak. Using the notion of join space,
they have rebuilt several branches of geometry.

We start by presenting some important and interesting exam-
ples of join spaces, suggested by three types of geometris:

25
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1) Affine join spaces over ordered fields

Let L be a vector space over an ordered field K. We define the
following hyperoperation on L:

V(z,y) € [} zoy={ax+Py|a>0, >0, a+L=1}
Then (L, 0) is a join space, called the affine join space over K.

2) Ray spaces over ordered fields

Let L be a vector space over an ordered field K. Given = € L, the
ray Z is the set {A\z | A > 0}. Let R be the family of rays of L. Let
us define on R the following hyperoperation® :

V(F,7) € R?, ®7y is the set of rays determined by the ele-
ments of xoy, where "o” is the hyperoperation defined in 1).

Then (R, ®) is again a join space, called the ray space of L.

We can obtain the following interesting isomorphism:

Let L be a real vector space, with an inner product, let S be
a hypersphere of L centered at 0, the zero of L and the bijection
function z — Z from S onto R— {0}. The (open) minor arc zy of a
great circle with endpoints z and y is mapped onto Z&%. Let e be an
”ideal element”, introduced to correspond to 0 and let S* = S U{e}.
Then S* can be converted into a join space isomorphic to (R, ®),
where the hyperproduct of two distinct nonopposite points z and
y of Sis ry.

3) Projective join spaces over a division ring
Let M be a left module over a division ring R. For z € M we
denote by z* the linear manifold of M determined by © € M, that
is *={A\z | A\€R, A # 0}.

We define the following hyperoperation o on the family L of
all linear manifolds of M .

V(z*,y*) € L? z*o y* is the set of linear manifolds deter-
mined by the elements of z* + y*,
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where ”+” is the addition in M applied to subsets of M. Then
(L, o) is a join space, called the linear manifold space of M (or a
projective join space over R). We have: Va* € L, a*o 0* = a* and
(0* € a* o z* < z* = a*).

Notice that if we define a point to be any element of L — {0*}
and a line as any set of the following type z* o y* U {z*,y*} (where
z* # y*), then the sets of points and lines form an analytic projec-
tive geometry over R. Moreover, all analytic projective geometries
can be obtained by this construction.

Now, we present some important connections between classical
geometries and join spaces, established by W. Prenowitz and then,
by him and by J. Jantosciak.

§1. Descriptive geometries
and join spaces

Essentially, a descriptive geometry is the linear geometry of a con-
vex region.

The Euclidean, hyperbolic and other classic geometries are
examples of descriptive geometry.

Descriptive geometries were studied by Coxeter, Pasch, Peano,
Hilbert, Moore, Russell and their work culminated in the definitive
treatment by Veblen.

1. Definition. A descriptive geometry is a pair (S, R), where
S is a set of elements, called points and R is a ternary relation
on S, called betweenness, satisfying the following conditions: For
(a,b) € §2, a # b, the line abis theset {zx € S|r=aorz=bor
(z,a,b) € Ror (a,z,b) € R or (a,b,z) € R}.

P1) if (a,b,c) € R, then a,b, c are distinct;
P2) if (a,b,¢) € R, then (c,b,a) € R and (b,c,a) ¢ R;
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P3) if (a,b,c,d) € S*, a#b, c# d and {c,d} C ab, then a € cd.
P4) if (a,b) € S?, a # b, there is ¢ € S, such that (a,b,c) € R;
P5) there exist three points not in the same line;

P6) (the Transversal Postulate) if (a,b,c) € S3, a # b # ¢ # a,
agbc and if (d, e) € S?, such that (b,c,d)€R and (c,e,a)€ER,
then there is f €de, such that (a, f,b)€R.

2. Definition. If (a,b) € S?, a # b, then the set [a,b] = {z € S |
(a,z,b) € R} is called by segment [a, b].

The set {z € S| (z,a,b) € R} is called a ray and it is said to
emanate from a.

We characterize descriptive geometries in terms of join spaces.

We define on S the following hyperoperation V(z,y) € 52,
z#y, wehave zoy={t|(z,t,y) € R} and z oz = {z}.

We obtain that (S, o) is a join space, called the descriptive join
space or the associated join space of the descriptive geometry (S, R).

Indeed, the associativity of ”o” is essentially an algebraic re-
statement of the Transversal Postulate P6); however, it has greater
deductive power, since no restriction on a, b, ¢ is assumed.

From P4), it results that V (a,b) € S?, a # b, we have a/b # .
We call a/b the extension of a from b.

Notice that a/a = {a} and a o b = bo a for any (a,b) € S

The implication a/bNe¢/d # @ => aodNboc # P is in essence
a reformulation of the Transversal Postulate P6), of Peano, which
may be stated in its conventional form: ”Segments which join two
vertices of a triangle to respective points of their opposite sides
intersect”.

Notice that the line ab is the set aobUa/bUb/a U {a, b}.

Now, let us consider a join space(J, o), for which

(1) Va€ J, aca=a/a={a}.
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Define on J the following ternary relation:
(a,b,c) E R<>a#candbecaoc.

3. Theorem. If (a,b,c) € R, thenaobNboc= 0.

Proof. Supose to the contrary that there is (a,b,c) € R, such that
aobNboc # P. Since (a,b,c) € R, we get B € a oc. We obtain
a € (boc)/band a € bfc. So (boc)/bNb/c+# B, whence boc = {b}.
Hence ¢ € b/b = {b}, that means b = c. Since a € (boc)/b, it results
a = b = ¢, contrary to hypothesis. ThereforeaocbNboc=0. =

4. Corollary. If (a,b,c) € R, then a,b,c are distinct.

5. Theorem. If (a,b,c) € R and (b,c,d) € R, then (a,b,d) € R
and (a,c,d) € R.

Proof. We have b € aoc and c € bod, whence b/anbod # 0, so
b€aobod. Thus {b} =b/bNaod#0,thatisb€aod. Ifa=d,
then b = a = d, a contradiction to (b,c,d) € R. Then a # d and
since b€a o d, we get (a,b,d)ER.

Similarly, we obtain (a, c,d) € R. ]

In a similar way, we can prove the following results:

6. Theorem. If (a,b,c) € R and (a,c,d) € R, then (a,b,d) € R
and (b,c,d) € R.

7. Theorem. If (a,b,z) € R and (a,b,y) € R, then (z,a,y) ¢ R
and (z,b,y) ¢ R. '

Stmilarly, if (a,z,b) € R and (a,y,b) € R, then (z,a,y) ¢ R
and (z,b,y) ¢ R.

The following theorem establishes a first connection between
the conditions of a join space and the postulates of a descriptive
geometry.

8. Theorem. The ternary relation R on J satisfies postulates P1),
P2), P4), P6).
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Proof. P1) is a consequence of Theorem 3.

By Theorem 5, (a,b,c) € R and (b, c,a) € R imply (a,b,a) €R,
a contradiction with corollary 4. Therefore, we have P2).

P4) is essentially a restatement of the fact that V(a,b) € J?,
there is z € J, such that a € bo x.

Now, let us verify P6). Suppose a, b, c are distinct and such that
a does not belong to the line bc and (b, ¢, d) € R, (c,e,a) € R, thatis
c€bod and e € coa. From here, we obtain aobnNe/d # 0.

Let f € aobNe/d. Then (a, f,b) € R. If d # e, then f belongs
to the line de.

Suppose d=e. By Theorem 5, we have (b,c,d)€ R, (c,e,a) €R,
whence (b, ¢, a) € R, that means a belongs to the line be, contrary
to the hypothesis. Therefore d # e and so, we obtain P6). .

9. Remark. The direct sum of two join spaces is a join space.

10. Theorem. The postulate P3) is independent of the conditions
of a join space definition.

Proof. Let us define the following hyperoperation on IR :
V(a,b) € R* aoa = {a} and a o b is the set of all real numbers
between a and b.

Let J =R x R. The element (z1, z2) of the cartesian plane .J
will be denoted by z.

Choose elements a,b, c,d in J, such that Vi€ {1,2}, a;<bi<c;,
¢1 =dy and ¢ < ds.

The line ab is composed of a, b, all the points which are above
and on the right of b, all points which are below and on the left of
a and all points which are simultaneously above and on the right
of a and below and on the left of b, that is

ab={z = (z1,22) € J | [z1 = a1 and 25 = ap] or
[1 = by and z3 = by] or [by < z; and be < z5] or
[a1 <y < by and a1 < T2 < by) or [z1 < a3 and 72 < ay]}.

The line cd is the ordinary Euclidean vertical line cd, that is cd =
= {17 = (1'1,.'1?2) eJ I C = d1 =.’L‘1}.
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We have {c,d} C ab, where ¢ # d, but a ¢ cd.
Hence P3) is not verified in J, which means postulate P3) is
independent of the conditions of join space definition. [

Some notions we shall use in the following:

Let (J, o) be a join space, satisfying (1) .

For S C J, then we denote by < S > the least closed subhyper-
group of (J, o), which contains S and we call it the closed subhyper-
group generated by S.

We say that S is a set of generators of < S >.

If A and B are closed subhypergroups of (J,0) and B is a
maximal proper subset of A, then we say that A covers B.

If S C J and V(a,b) € S?, we have ao b C S, we say that S is
closed under 7o” or, in geometrical language, S is conver.

11. Proposition. If S; and S, are convez, then also S; N S,
51082 and S;/S2 are conver.

Proof. We have

(51052)0(31032) = (51081)0(82052) C 5105, and

(81/82)0(S51/S2) C ((81/52)051)/82 =
= (519(51/52))/S2 C ((81051)/82)/S2 C (81/82)/S2 =
=851/(52082) C S1/S2 (by Theorem 64, 5),4),3), p.12).

Now, let N be a closed subhypergroup of (J,0) and a € J.
Then N/(N/a), denoted (a)y, is called the coset of N determined
by a.

12. Theorem. Let N be a closed subhypergroup of (J,0). Then
the cosets of N are closed under ”o”, are mutually disjoint and

cover J.

Proof. By Proposition 11, Va € J, (a)y is closed under ”o”. We
also have a € (a)n, since V(a,b) € J?, b € a/(a/b). We have to
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show only that the cosets are disjoint, that is if a € (b)y, then
(a)n = (b)n- Since a € N/(N/b), it follows

N/a C N/(N/(N/b)) C (N o (N/b))/N C (N/b)/N =
= N/(boN)=(N/N)/b= N/b, see Theorem 64, 3),4),5), p.12).

On the other hand, from a € N/(N/b) it follows b€ N/(N/a), so
that N/b C N/a, by the above argument. Therefore N/a = N/b,
whence (a)y = (b)n- ]

We shall denote by J/N the set of all cosets of N determined
by elements of J. Define on J/N the hyperoperation:

(a)v® (b)n = {(z)v | z € a0 b}.

13. Remarks.

1. The hyperproduct ”®” of cosets in J/N is independent of the
elements of J, which determine the cosets.

2. J//N has a unique identity element, namely N and if n € N,
then (n)y = N.Indeed, if n € N, then (n)y = N/(N/n) = N.

14. Proposition. For each element A of JN, there exists a
unique element X such that N € AQ X.

Proof. Suppose N € A® X, where A = (a)y and X = (z)n. Then
(@)n ® (z)n = {(t)v | t € aox} > N, that means there is n € N,
such that n € aoz. Hence a € N/x so that X = N/(N/z) D N/a.
Since the cosets of N are disjoint, there exists at most one X
such that N € A® X.
On the other hand, if we choose £ € N/a then X = (z)n
satisfies N € A® X. ]

X will be called the inverse of A and will be denoted by A’.
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15. Corollaries.
1. We have VA € JJN, (A) = 4
2. (a)y = (a')n if and only if acd’ NN # @ (i.e. @’ € N/a).
The order of JJ/N is the cardinality of the set J/N.

16. Remark. If we restrict J to be an Euclidean space and N a
point, then J/N is essentially the set of rays issuing from N.
Projecting the rays of J/N onto a hypersphere centered at N,
we see that J/N is essentially a spherical space; we define the minor
arc of a great circle joining two points as their "hyperproduct”.

17. Definition. If A and B are closed subhypergroups of (J,0)
such that B C A and the order of A/ B is 3, then we say that B
separates A. '

Now, we introduce three new postulates, for a join space (J, o)
(in which condition (7) holds), necessary to characterize a descrip-
tive geometry.

J1) If (a,b) € J?, a # b, then < a,b > covers a.

This is a consequence of the postulate "two points belong to a
unique line”.

18. Remarks.
1) A join space satisfying J1) is an exchange space.

2) J1) is independent of conditions of join space definition and
of condition (7).

Indeed, it is sufficient to consider J = RxIR, V(a,b) € R?,
aca={a} and aob is the set of all real numbers between a and b.

As in Theorem 10, we consider a,b,c,d in J, such that
Vie {1,2}, a; < b < ¢, c1 = dy and ¢; < dz, where z = (1, 22),
Vz e J
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We have < ¢,b >= J, < ¢,d > is represented by the vertical
"line” cd. Thereforec €< e¢,d >C<c,b>and<c,d>#<c¢,b>.
Thus ¢ makes J1) invalid in J, but all the conditions of a join space
definition as well as (7) are satisfied’ [

19. Definition. A subset B of a closed subhypergroup A of an
exchange space J is called a basis of A if it is independent and
furthermore < B > = A.

Any closed subhypergroup of an exchange space has a basis.

Any two bases of A have the same cardinal number called the
dimension of A, denoted by d(A).

If B is another closed subhypergroup of (J,0), such that
B C A, then d(B) < d(A).

If A and B are finite dimensional closed subhypergroups of
(J,0), such that AN B # () then the dimensional equality holds:

d(< A,B>)+d(AnB) =d(A) +d(B).

If A covers B, then d(A) = d(B) + 1.
If d(A) = n is finite, any independent set of n elements of A is
a basis of A.

The following postulate J2) establishes that (J, o) contains two
closed subhypergroups A, B such that B separates A.
We may restate it, as follows:

J2) There exist A and B, closed subhypergroups of (J,0) such
that B C A and A//B has order 3.

J2) is verified in a descriptive geometry, since we can take A
to be any line and B one of its points.

In order to avoid introducing the hypothesis d(J) > 2 in the
following theorems, we postulate

J3) d(J) > 2
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meaning J contains a set of three independent elements.

20. Theorem. Let N be a closed subhypergroup of (J,o0) and
(a,b,a’,b') € J*, such that aca’ N N # @ # bob' N N. Then
< a,b,N >= N/(aocb) U N/(aob’) U N/(a’ob) U N/(a'ot') U N/a U
UN/bUN/a’UN/b' UN.

Proof. First of all, notice that if A and B are closed subhyper-

groups of (J,0) such that AN B # @ then < A/B >= A/B
(by Theorem 74, p.14). We have

<a,bN >=<<a,N>,<bN>>=<a,N>/< b,'N >=
= (NUN/aUN/d)/(NUN/bUN/V) =
(see [312], Theorem 10.6, Corollary 2)
= N/NUN/(N/b)UN/(N/¥)U(N/a)/NU
U(N/a)/(N/b) U (N/a)/(N/¥) U (N/a')/NU
U(N/a’)/(N/b) U (N/a')/(N/¥).
Notice that (N/xz)/(N/y) = (N/(N/y))/z = (N/y')/z = N/(zey’)

(by Theorem 69, p.13). On the other hand, N/N = N, so we obtain
the desired result. n

21. Corollary. If N is a closed subhypergroup of (J,0), then
<a,b,N > [N = (a)y ® (bn) U (a)n/(b)n U (b)n/(a)n U ((a)v ®
®(b)n)' U (a)v U (b)v U (a)y U (B)y UN.

22. Theorem. V (a,b) € J?, we have
<a,b>=aobUa/bUb/aU {a,b}.

Proof. The result is trivial if a = b and thus suppose a # b.

By J3), there is an element z such that a, b, z are distinct and
form an independent set.

According to Corollary 21, ift €< a,b > there are at most nine
sets into which (t), can fall. We shall consider these possibilities:
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1) Suppose (t); € (a); ® (b):- Then there is t' € aob, such
that (t); = (t'),. We show ¢t = t’. We have t' €< z,t > so that
{t,t'} C< a,b > N < z,t > . On the other hand, by the dimen-
sional equality, we have d(< a,b > N < z,t >) = d(< a,b>) +
+d(< z,t>) —d(<< a,b >, < z,t >>) =2+2—3 = 1, since
<< a,b> <zt >=<a,bjx > . Hence < a,b > N < z,t >
consists of a single element, so that ¢ = ¢’ and ¢ € aob.

2) Now, consider the possibility (t), € (a)z/(b)-

We have (a); € (t); ® (b),, so that there is a’ € bot, such
that (a), = (a’);. f t = b, then o’ = b and (a), = (b):, con-
trary to the independence of a,b,z. Hence t # b. By J1), from
< a,b >>< b,t >3 b, we obtain < b,t >=< a,b >, whence
aE<a,z>N<bt>.

On the other hand, o’ €< a,z > N < b,t > . Applying the
dimensional equality, as above, we obtain a = a’. Therefore, a € bot,
so t € a/b. Similarly, (t); € (b):/(a), implies ¢ € b/a. If (t). = (a).
we obtain t = a and similarly, (t); = (b), implies t = b.

3) Now, suppose (t); C ((a): ® (b)z)’ = (aob),. Then there
exists ¢ € aob, such that (t), = (£).. From here it follows tof > z.
Since {t,{} C< a,b >, it follows x € tot C< a,b >, which is
impossible since a, b, x are distinct and form an independent set.

In a similar way, we can show that the other three possibilities
for (t), vacuous. Therefore t € aobUa/bUb/aU{a,b} and < a,b >=
=aobUa/bUb/aU{a,b}. [

23. Remark. Postulate J3) is essential for the validity of the last
theorem. We can show this, constructing the following example:
Let J = azUayUaz, where az,ay, az denote pairwise disjoint
open intervals.
On J, we define the hyperoperation:

Y (u,v) € J?,u # v, we have uou = u; uov = au U av,
1 b b )

where au and av are open segments.
Then (J,0) is a join space, in which () holds; moreover, J1)
and J2) hold.
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Let ¢ € ax and b € ay. Then J3) is invalid since < ¢,b >= J
and d(J) = 2. The last theorem fails, because

cobUc/bUb/cU{c,b} =axUay #<c,b> .

The following theorem is a characterization of descriptive geome-
tries.

24. Theorem. Descriptive geometries are characterized as join
spaces satisfying J1), J2), J3) and (7).

Proof. Let (S, R) be a descriptive geometry. V(z,y) € S%, z #y,
we define zozx = {z} and zoy = {t | (z,t,y) € R}. Then (S,0) is
a join space, which verifies J1), J2), J3) and (7), as we have seen
before.

Conversely, if (J, o) is a join space satisfying(7) then P1), P2),
P4) and P6) hold, as we have seen before.

Recall that (a,b,c¢) € R <= a # c and b € aoc.

We have to show that J1), J2) and J3) imply P3) and P5).

The line ab (where a # b) is the set aobUa/bUb/aU{a,b} and
we have proved before that the line ab coincides with < a,b > .

We verify that: ifa # b and {c¢,d} C< a,b >, where ¢ # d, then
< a,b >=< ¢,d > . This follows from J1): for ¢ # a or b; suppose
c¢# a. Then < a,b >D< a,c > a and by J1), it follows < a,b > =
=< a,c>.Thus d €< a,c > . Since ¢ # d, we can show similarly
< a,c>=<cd >, so that < a,b >=< ¢,d > . This obviously
implies P5).

We have to verify now only P3). By J3) there exist distinct
elements a, b, ¢ of J, which form an independent set. Suppose a, b, ¢
are contained in a line, say the line pg =< p,q > . But then
< a,b >=< p,q >3 ¢, contrary to the independence of a,b,c.
Therefore, a, b, c are not in the same line and so, P5) is verified. m

§2. Spherical geometries and join spaces

25. Definition. An (abstract) spherical geometry is a system
(S, R), where S is a set of elements called points and R is a ternary
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relation on S called betweenness, which satisfies the following pos-
tulates:

(i) if (z,y,2) € R, then z,y, z are distinct;
(ii) if (z,y,2) € R, then (2,y,z) € R;

(iii) for any x, there exists a unique z’ (called the opposite of x)
such that =’ # z and the following implication holds:

(z,u,v) € R = (u,v,1’) € R;
(iv) ify # z and y # «’, then there exists u such that (z,u,y) € R;

(v) if ”0” is defined in () then (z oy) o z = z o (y o z), whenever
both members are defined.

26. Examples of spherical geometries:
1. Let S be an Euclidean n-sphere and R be defined as follows:

z, z are distinct and nonopposite and
(z,y,2) € R<={ v is an interior point of the minor arc
of a great circle with joins x and z.

Then (S, R) is a spherical geometry, called the Euclidean sphe-
rical geometry.

2. Let S be the set of rays emanating from a point of an ordered
affine space of arbitrary (finite or infinite) dimension. We

define

z, z are distinct
(z,y,2) € R<= < theray y is interior to the angle
formed by the non—opposite rays z and z.

Then (S, R) is a spherical geometry (which includes the first,
in the sense of isomorphism).

We can define on S the following partial hyperoperation:
V(z,y)€S? y+#x, y+#x', we have

(*) zoy = {t| (z,t,9) 3 R}, zox = {z}.
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Except in the trivial cases, it is impossible to extend this partial
hyperoperation to an semihypergroup on S:

27. Theorem. The partial hyperoperation (x) for a spherical geo-
metry on at least three points does not extend to a semihypergroup.

Proof. Suppose such an extension of ”o” possible in S.
I) First of all, we shall check the following equality:

V(z,y) € S% y#z, y# 7,
zo(z'oy) = zoy U {y} Uz'oy.

Notice that the hyperproduct zo(z'oy) can be considered. Indeed,
since y # 2, if we suppose &’ € 2’0y, then we have (¢/,2',y) € R,
a contradiction. Thus, 2’ ¢ z’oy. Moreover, z ¢ z’oy, otherwise
(«',z,y) € R, whence (z,y,z) € R, a contradiction.

Therefore, we can consider the hyperproduct zo(z'oy). Now,
we verify:

u € zo(z'oy) <= u € zoy U {y} Uz'oy.

”==" There exists v € 2’0oy, such that u€ zov. Hence (z',v,y) ER,
whence (v,y,z) € R and so (z,y,v) € R and (y,v,2') € R. It
follows z # v and z’ # v. On the other hand, from u € zov it
follows (z,u,v) € R. If u = y we have u = y € zoy U {y} U z'oy.
Suppose u # y. Notice that if (a,t,b) € R and (a, s,b) € R, t # s,
then it can be easily verified that (a,t,s) € R or (a,s,t) € R.
Therefore, from (z,u,v) € R, (z,y,v) € R and u # y it results
(z,u,y) € Ror (z,y,u) € R.

If (z,u,y) € R, then u € zoy.

If (z,y,u) € R, then (y,u,z’) € R, whence (z/,u,y) € R and
so u € z'oy.

Therefore, u € zoy U {y} U zoy.

”&=" Suppose u € zoy. Then (z,u,y) € R. Since y # z and
y # o', there exists z, such that (2/,2,y) € R. Hence (2,y,z) € R
and so (z,y,2) € R. So we have ©’ # z and z # 2.
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Using the associative law, the following implication can be ob-
tained:

(a,b,c) € R and (a,c,d) € R=> (a,b,d) € R.

Hence, from (z,u,y) € R, (z,y,2) € R it follows (z,u,2) € R.
Thus u € zoz. From (2/,2,y) € R it follows z € z'oy. Therefore
u € zo(2'oy).

Now, suppose u = y. Then we obtain © € roz and z € 1oy,
with the same choice of z and so u € zo(z'oy).

Finally, suppose u € z’oy. Then (2/,u,y) € R and we have
uFz,u#z.

Now choose z such that (2, z,u) € R. Then (z,u,z) € R and
(z,u,2) € R. From (2/,z,u) € R and (2/,u,y) € R, we obtain
(', 2,9) € R, that means z € z’oy. On the other hand, u € zoz
and so u € zo(z'0z). Therefore V (z,y) € S?, z # y # 2/, we have
zo(z'oy) = zoy U {y} U z'oy.

IT) Suppose (z,p) € S?, = # p # =’. From I) and the associative
law we obtain (zoz’)op = zop U {p} U z’op. So, p € (zoz’)op, that
means there is s € zoz’, such that p € sop. If p # s and p # s’ then
p € sop implies (s, p,p) € R, a contradiction.

Therefore p = s or p = §'. It follows p € zox’ or p’ € zoz'.
It is not restrictive to suppose p € zox'. Since x # p # «’, there
exists ¢ € S, such that (p,¢,z) € R. Hence (q,z,p) € R and so
(p,x,q) € R, whence z € pog. Since p € zoz’, we obtain z € (zox’)oq.
But ¢ # z and ¢ # 2/, and since (zoz')og = zoq U {q} U z'oq, we
obtain z € zogq U {q} U z’og. All the possibilities z € zog (that
is (z,7,9) € R), ¢ = ¢, ¢ € 2'oq (that is (z/,z,q) € R, whence
(z,q,x) € R) are false, and so the proof is complete. n

However, we can enlarge S by the adjunction of an ”ideal
point”, which will play the role of an identity. In this manner we
obtain a join space associated with the given spherical geometry.
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Let e ¢ S and let S’ = SU{e}. We extend the hyperoperation

n . n

o” as follows:

Vz €8, zox' ={z,2,e};
(**) Yy e Sl7 yoe = eoy = y.

Thus, we obtain a join space (S’, o) with identity "e”.
Remark that the associative law holds for (5’, o).
Now, let us check the implication:

a/bNec/d # 0 = aod Nboc # .

Notice that Va € S’, a has a unique inverse a’ and V (a,b) € §?,
a/b = aob'. So, a/bNc/d # O implies aod’ N cod’ # @, whence
{a} N bo(cod') # O, hence a/d’ Nboc # B, that is aod N boc # @
(by Theorem 64, 2), p.12).

Therefore, (57, o) is a join space, called the associated join space
or a spherical join space of the spherical geometry (S, R). ]

28. Theorem. A join space (J, o) is the associated join space of a
spherical geometry if and only if (J,0) has an identity and Va € J,
we have aca = a and Vz € J, x distinct from the identity, < = >
has cardinality 3.

Denote by < z > the least closed subhypergroup of (J, o) which
contains z € J.

Proof. "= Let (S’,0) be the associated join space of a spherical
geometry (S, R).

We have only to check that if z € S’, z # e, then the order of
< z > is 3. Any closed subhypergroup of (S’, o) which contains z,
must contain {z, z’,e} = X. The set X is the least closed subhyper-
group of S’ which contains z. Moreover z # z’ # e # «, hence
< z > has order 3.

?<«=" Let e be the identity of J and let S = J —{e}. We define
the following ternary relation on S:

(z,9,2) € R<y € z02, 2z ¢ {z,2}
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(where z' is the unique inverse of z).

Now, we show that Vz € S, zox’ = {z,2’,e}. Since e €
€ zoz’ it follows that z € zo(zoz’) = (zox)ox’ = zoz’. Simi-
larly, 2’ € zoz’. Moreover = # e # z’ # z. Indeed, if x = &/, then
zox’ = zor = {z} and so {z, e} is the least closed subhypergroup
of (J,0), which contains z and so < z > has order 2, contrary to
hypothesis.

Therefore {z,z’,e} C zoz’. But {z,z’,e} is the least closed
subhypergroup which contains z, so zoz’ C {z, ', e}. Hence zoz’ =
= {z,2/,e}.

Now, we shall verify that Vz € S, zoe = z, that is the identity
e is a scalar one. Indeed, we have zoe C {z,z’,e}, which is a
subhypergroup. Suppose to the contrary e € zoe. Then ' € zoe,
otherwise zoe = {z, e} and so ord z = 2, a contradiction.

Hence, 2’ € zoe, whence z € e/z’ Nz’/e. Since (J,0) is a join
space, it follows that e = 2/, which is false.

We shall prove that (S, R) is a spherical geometry.

(i) if (z,y,2) € R, then we have z ¢ {z,2'} and y € zoz. Suppose
to the contrary y = z. Then # € zoz. On the other hand,
(J,0) is join space with a scalar identity, so it is a canonical
hypergroup. From z € zoz, we obtain z € zoz’ = {z,2/, e},
which is false. So, y # x. Similarly, we obtain y # z.

(i) if (z,y,2) € R then y € zoz = zoz, whence (z,y,z) € R.

(iii) if (z,u,v) € R, then u € zov, whence v € woz’, hence
(u,v,2') € R.

(vi) if y ¢ {z, 2}, there is u € zoy, and so (z,u,y) € R.

Therefore, (S, R) is a spherical geometry. Moreover, (J,0) is the
associated join space. u
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§3. Projective geometries and join spaces

29. Definition. A projective geometry is a system (S,T) where
S is a set of elements called points, and T is a set of subsets of S,
called lines, which satisfies the following properties:

(i) any line contains at least three points;

(ii) any two distinct points a,b are contained in a unique line,
denoted by L(a,b);

(iii) if a,b,c,d are distinct and L(a,b) N L(c,d) # ®, then
L(a,c) N L(b,d) # 0.

We have already mentioned the connections between the pro-
jective join spaces and the analytic projective geometries.

Now, we wish to associate a join space with a given projective
geometry.

Remember that in a projective join space (L, o ) over a division
ring R, we have

Va€elL, aoa=0 if R=1%Z,,
ao a = {a,0}, otherwise.

Moreover, if R = Z, each line of the analytic projective ge-
ometry has exactly three points, otherwise each line has more than
three points.

Therefore, when an abstract projective geometry (S,7) con-
tains a line, we are able to tell how the hyperoperation of a point
to itself should be defined.

If we consider a projective geometry with one point and no
lines, we are not able to discriminate between the two choices of
the hyperproduct of the point to itself.

According to these considerations, we shall associate with a
projective geometry (.S, T), a join space (S, o) as follows: let S’ =
= S U {e}, where ”¢” is the ideal point, which plays the role of 0*
(e¢ S).

Case I. T # 0.
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L. 1 (z,y) € 5%, & #y, then zoy = L(z,3) — {z,9}.

2. Let z € S. If some line of T contains exactly three points,
then zoz = {e}, otherwise zoz = {z, e}.

3. faed, eoa=aoce=a.
Case II. T = §.

1. if S = {a}, then we can define two hyperoperations on S’ and
for each of these, ”e” is an identity, so we have aca = {e},
while for the other aca = {a, e}.

2. if § =0, we define ece = {e}.
30. Theorem. (5’,0) is a join space.
Proof. First of all, notice that:

(o) e € zoy <=z =y;

(B) Let (z,y, 2) € S°. Then x,y, z are distinct and collinear if and
only if z € zoy and = # y.

Now, let us check that
(7) Y(z,9) € §?, z/y = xoy.

1. Indeed, if (z,y) € S?, = # y and z € zoy then z € S, so, by
(B), the points z,y, z are distinct and collinear, whence y, z, T are
distinct and collinear, so that z € yoz and z € z/y.

Conversely, if z € z/y, then x € yoz and z € S. If y = z then
z € yoy C {y,e}, whence z = y, contradiction. Thus y # z and
the steps can be retraced to yield z € zoy.

2. If (z,y) € S, £ =y. Suppose zox = e. Then
z/x ={t|r€xot} = e = rozx.
Suppose zoz = {z,e}. Then

z/x = {t | z€xot} = {z,e} = zoz.
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3. The remaining cases £ = e, and y = e are easily disposed
of. So, V(z,y) € S%, we have z/y = zoy.

We have to check now that the following implication holds
in §:

(1) z/ynz/t # 0= zot Nyoz # .

Since z/y N 2/t # O it results that there is u € xoy N zot.

Case 1. If z,y, 2,t are distinct in S and noncollinear, then

(L(z,y) — {z,3}) 0 (L(2,1) — {2, t}) # 0 and L(z,y) N L(2,t) # 0.

By the definition of a projective geometry it follows
L(z,t) N L(y, 2) # 0, so

(zot U {z,t}) N (yoz U {y,2}) # 0.

Suppose y € zot. It results t €y/x = zoy so that L(z,y)NL(z,t) > t.
But u € L(z,y) N L(2,t) and u # t. Therefore, L(z,y) = L(z,t),
contrary to hypothesis. Thus y ¢ zot. Similarly, z ¢ zot; z ¢ yoz
and t ¢ yoz. Hence the only possibility is zot Nyoz # .

Case 2. If z,y,2,t are distinct in S and collinear, then by the
definition of a projective geometry, we have L(z,t) = L(z,y) =
= L(y, z). Hence, there is u € L(z,t)NL(y, z). Then u ¢ {z,y, z,t}
implies u € zot N yoz.

Case 3. z,y, 2,t are not distinct and in S. Since the proof is based
on zoy N zot # O, it suffices to consider the situations z =y, z = 2
and z =1t.

The result is immediate for z = z.

If z = y, then we have two possibilities:

i) The result is clear for z = ¢.

ii) Thus let z # t. We have u € zoy = zoz C {z,e}. Moreover
u # e, otherwise z = ¢. Thus u = z and by the definition of
the hyperproduct in S’, every line of the projective geometry (S, T)
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contains at least four points. Since z € zot, points z, z, ¢ are distinct
and collinear.

Let v € L(z, 2), v ¢ {z,2,t}. Then v € xot Nzoz = ot Nyoz.

If x = t. We may assume = ¢ {y,z}. Then u € L(z,y)NL(z, z).
Hence u # z yields L(z,y) = L(z,2). If y = z then zot Nyoz =
= zoz Nyoy > e. Suppose y #* z. Then z,y, z,u are distinct and
collinear. By a well-known theorem of projective geometry, all
lines of (S,T) have the same cardinality and so contain at least
four points. By the definition of the hyperproduct in S’, we have
zox = {z,e}. Hence zot Nyoz = zoz Nyoz > z.

Case 4. One of 7,7y, z,t ise. Say z = e. Then zoyN zot # ( yields
Y € zot, so that zot Nyoz = {t} Ny/z # 0. The other possibilities
are treated similarly.

Now, let us verify the associativity. Suppose w € (zoy)oz,
where (z,, z) € S®. Then w/zNy/z = w/zNxoy # B, whence, by
(u) it follows woz Nzoy # @. Then w/xNyoz # @ and w € zo(yoz).
Thus (zoy)oz C zo(yoz).

The reverse inclusion can be verified similarly and since the
commutativity holds, (S, 0) is a join space. |

31. Remark. ”¢” is an identity of (S’,0) and Va € S, we have
< a >= {a,e} since {a,e} C< a > and {a,e} is linear. Thus,
< a > has cardinality 2, for any a € S.

(57, 0) is called the associated join space of the projective geo-
metry (S,T') or a projective join space.

Except of the choice of ”e”, (S’,0) is unique, except when S
consists of a single point. In this case, there are only two associated
join spaces.

32. Proposition. If (J,0) is a join space with identity e, such
that < z > has cardinality 2, for any x € J — {e}, then (J,0) is
an exchange space, for which the following properties hold, for any

() € (J—{e})*:

(i) <z>={z,e};
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(i) z7! =z
(i) e € zox C {z,e};
(iv) <z,y>=zoyU{z,y,e}.
Proof. (i) follows directly from the hypothesis, whence (ii) results
and then (iii) is immediate from (i) and (ii).
(iv) Wehave < z,y >=<<z>,<y>>=<z> /<y >=
=<z>o0<y>={z,e}o{y e} =zoyU{z,y,e}.
Recall now that an exchange space is a join space which satis-
fies the following conditions:

I) if x €<y > and z is not an identity then <z >=<y > .
II)ifze<z,y>and z¢<y>then< z,y >=<z,y>.

Moreover, if the given join space has a scalar identity then I) and

II) are equivalent (Theorem 75, p.14). So, it sufficies to verify I).
Let v €< z >, u # e. By (i), we have < £ >= {z,e}. Thus

u=zand <u>=<I>. ]

33. Lemma. Let (J,0) be a join space with identity e and such that
< 8 > has cardinality 2, for any s # e. Suppose there ezist a,b in J,
such that aob is a singleton and e ¢ {a,b}. Then any hyperproduct
of elements of J is a singleton and (J,0) is a commutative group.

Proof. First of all, we prove that there is z € J — {e}, such that
zrox = e. Suppose this is false. Let y € J. By the above Proposition,

e € yoy C {y, e}, whence yoy = {y,e}.
Let w = aob. Then

{w, e} = wow = aoboach = acaobob = {a,e}o{b,e} =
= {ab,a,b,e} = {w,a,b,e}.

Since e ¢ {a,b} we have a = b = w and then a = aoa = {a,e}, a
contradiction.
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Therefore, there exists € J — {e}, such that zoz =e.

We shall prove more, that Vr € J, we have ror =e.

Suppose on the contrary ror # e. We have rozox = roe = r.
Let t € roz. Then tox C rozox = r, hence tox = r. Since ror # e,
it results

{r,e} = ror = tozotoz = totorox = tot C {t, e}.

Hence r =t and roz = r, whence z € r/r = {r,e} so that x = r,
contradiction with ror # e.

Therefore, Vr € J, ror =e.

Finally, we prove that V (u,v) € J?, uov is a singleton. Let
71 € uov 3 1. Then

71072 C UOVOUOV = UOUOVOV = €0e = e,

whence r; = ry as desired. =

34. Theorem. Let (J,0) be a join space with identity e, such that
< t > has cardinality 2 for Vt € J — {e} . Then (J,0) is the
associated join space of a projective geometry.

Proof. Let S = J—{e}. The element of S will be called the points.
Let L(z,y) =< z,y > —{e}, if (z,y) € S?, z # y. We call L(z,y)
a line and we denote the set of all lines by T'.

We prove that (S,T) is a projective geometry and (.J, o) is the
associated join space.

First of all, we shall check that V(z,y) € S2,  # y, we have

L(z,y) = zoy U {z,y}.
By the above Proposition, we have
L(Z’, y) =<z,¥y> —{6} = (1I0y U {z,y,e}) - {e} =zoy U {IE, y}

Now, we verify that any line is a set of points, which contains at
least three points. Let (z,y) € S?, z # y. We have L(z,y) C S.
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Suppose ¢ € zoy. Then y € z/z C {z,e}, which is false. So,
z ¢ roy and similarly, y € zoy. Therefore, L(z,y) contains at least
three points.

We verify that any two distinct points are contained in a unique
line. Indeed, if (a,b) € S%,a # b, thena € L(a,b) 3 b. Suppose that
a € L(z,y) © b. Then {a,b} C< z,y > and {a, b} is independent.

By the Exchange Theorem, we have that < a,b > =< z,y >,
so that L(a,b) = L(z,y).

Finally, we verify that if a,b,c,d are distinct and L(a,b) N
NL(c,d) # 0, then L(a,c)NL(b,d) # 0. From L(a,b)NL(c,d) # 0, it
follows (acbU{a, b})N(codU{c,d}) # 0. Suppose that acbNcod # {.
Then aob™! Ndoc™! # @ and a/bNd/c # 0. Hence aoc N bod # @
and so L(a,c) N L(b,d) # 0.

Now, suppose that ¢ € aob. Then b € ¢/a = aoc, whence
L(a,c) N L(b,d) # 0.

The remaining cases are symmetrical to ¢ € aoc.

Therefore (S,T) is a projective geometry.

The next step is to verify that (J, o) is the associated join space
of (S,T). Consider S’ = SU {e} = J. If J = {e} then S = @ and
T = and (J, o) is an associated join space of (S,T’) by definition.
If J ={u,e}, u+#e, then S = {u}, T = 0. We have eou = uoe = u,
eoe = e and e € uou. Hence uow: = e or uou = {u, e} and in both
cases (J, o) is an associated join space of (S, T).

Suppose now that J has at least 3 elements, that is S has at
least two elements and T # 0.

The associated join space (S, o) of (S, T') is in this case defined
as follows:

for (z,y) € S%,  #y, zoy=L(z,y) - {z,3},

if z € S and if some line of T contains exactly three points,
then z o x = e; otherwise, zo z = {z,¢e};

ifzreS, eox=z0e=r.

Now, we have only to verify that

(§',8)=(50).
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For Vz €S, zoe = zoe. For all €S, zoe = o e. If (z,9) €S2,
x # y, we obtain as above that {z,y} N zoy = 0. Then we have
zoy=L(z,y) - {$7y} = Ioy.

Finally, consider x € S. Suppose that some line L(u,v) of
T contains exactly three points, so that zo z=e. Since L(u,v) =
= uov U {u, v}, we see that uov is a singleton. By the Lemma, it
results that zoz is a singleton. Hence zoz = e and z o x = zoz and
the theorem is proved. n

Now, we can characterize projective geometries in terms of join
spaces as follows:

” A join space (J, o) is the associated join space of a projective
geometry if and only if it has an identity e and Vz € J — {e},
< ¢ > has cardinality 2.”

§4. Multivalued loops and projective
geometries

In this paragraph, we prove that the associated join space of a
finite projective geometry (S, T) with N points on each line (N > 3)
is isomorphic to a quotient of an ordinary loop modulo a special
equivalence relation. The following results have been obtained by
St. Comer.

Let (A, -, e) be a loop and p an equivalence relation on A. If
Z,y and Z are equivalence classes, and Z C T - 7, we say that 2z
is (Z,y)-projective if Vu € T, Jv € § such that u-v € Z and
Vv € 9, Ju; € T, such that u; -v; € 2. We say that the equivalence
relation p is special if {e} is an equivalence class and every product
Z-y of equivalence classes is a union of (Z, §)-projective equivalence
classes.

A quasihypergroup (B,-,e) (where e € B) is called a multi-
valued loop if e is a scalar identity of B and Va € B, there exist
unique z,y in B such that e € ax Nya.
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It is easy to verify that a quotient of a loop (A4, -, e) modulo
a special equivalence relation p is a multivalued loop (A4/p, *{e}),
where Z € Z x § if and only if Z C Z - §. Note that not every
multivalued loop is isomorphic to a quotient of a loop modulo a
special equivalence relation (see [43, Prop. 2]).

The construction of the corresponding loop
and of a special equivalence relation

Let (S’,0) be an associated join space of the finite projective geo-
metry (S,T) with N points on each line (N > 3). We shall construct
a loop (L, -,q) and a special equivalence relation p on L, such that
(8’, 0) is isomorphic to (L/p, *{q}).

Case I: First, we consider a finite projective geometry (.S, T), where
each line contains N points, N > 4. Let us denote the points of S
by p1,p2,... For each p;, we choose a set A; with exactly N — 2
elements, such that Vi # j, A;NA; = 0.

Let g be an element, such that ¢ ¢ | JA;. Set L = {q} U|JA;

and let p be the equivalence relation on L, for which {¢} and the
A; are the equivalence classes.

If pi#p;, then let L(pi, p;)={px,, --., Pxy }, Where ky<ko<- - -<ky.
Let L(pi, p;)* be obtained from L(p;, p;) by permuting (py,, ..., Pry)
cyclically to start with p; and then deleting p; and p;.

Let L(p;, p;)* = (Psiiqa)---Psii(n—2))- If F' is a finite subset of S
and p; € F, we say that p; has rang n in F, if p; is the n'" element
of F', with respect to the linear ordering induced by the indices.

For i # j and p,, € L(p;, p;) — {pi, p;} let 7(m) be the rank of
pj in L(ps, p;) — {pi, pm} and let 7(j) be the rank of p; in L(p;, p;).

Notice that if p;, p;, pm are three distinct collinear points, then
7(j) = 7™(j). We also find that

_ (), if i>j<m
r(m)=3 P(y)—1, ifi<j<m,orm<j<i
7(j)—2, if i<j>m.
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In the following, we regard the second index k of a;x € A; as an
integer modulo N — 1, hence sums and differences involving these
indices are calculated modulo N — 1.
Let us define the following operation on L:
Va€el g-a=a-gq=a

o s _ | aipre, if K+£#0(modN —1)
Vi) € &, G ane = { ¢, if k+£=0(mod N — 1)

Vi#j, Qg Qj¢ = Qmp, Where

:{ sik+£-1), if i<j

s9(k + ), if i>5 20d

()
n=1r9(m)+k—1(mod N —1).

We verify that (L, -, ¢q) is a loop and (S’,0) ~ (L/p, *, {q})-
Case II: As above, a similar loop construction for the case N = 3
also yields a loop whereby the special corresponding equivalence
relation is the identity. Therefore, this construction does not give
us the desired isomorphism.

As above, order the set P of all points of (S, T') as p1, pz, ... For

each p;, choose pairwise disjoint two—element sets A; = {aio,a; }
and g ¢ JA;. Let L = {q} U| JA; and p defined as in Case I.

We dteﬁne the following of)eration on L:
YVaeLl,a-gq=q-a=a,

V(ai, aie) € A?, @ik - Qg = { q, if k#£4¢

@ e+, if k=¢

where k + £ is calculated mod 2) and Vi # j a - Q¢ = Qmp, Where
n =k + ¢(mod 2) and m is such that p,, = L(p;, px) — {pi, Pr}-

35. Theorem. With the above constructions, we have:
1) (L7 7Q) s a lOOp;

2) p is a special equivalence relation on L;
3) (8',0) = (L/p, *{q})-
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Proof. We verify for the case N > 4. The case N = 3 is similar
but simpler.

1) First, we check that in the equality z = zy, z and any of
and y determines uniquely the other.

It is immediate if ¢ € {z,y, z}.

Let = ai, ¥y = aje and z = Gpp. If card{s, j,m} < 2, then
i = j = m and the conclusion is immediate.

Suppose i # j # m £ 1. We have two possibilities:

a) a;x and a.,, are given. Notice that 7(m) increases mono-
tonically with j, so there exists a unique p; € L(p;, Pm) — {Pi, Pm},
ri(m) + k — 1 = n(mod N — 1). Now, we can obtain, in a similar
way, the unique h such that s(h) = m. If i < j, we can obtain £
uniquely from A = k+ ¢ — 1(mod N — 1), and respectively, if i > j,
from h = k + ¢(mod N —1).

b) a;, and @, are given. First, suppose j < m. We have

g FG) -1, if i<
"(m)‘{w'(j), if §> j.

We seek 7 and k, which satisfy the equalities: 77(m) = n—k+1
and [(s9(k+£€—1)=m, if i < j) or (s9(k+£) =m,if i > j)].

Using the definition of 7/(m) and the fact that 7(7) = ™(j),
we obtain:

if i<j, k=n—7"(j)+2, respectively
if i>7, k=n—7(j)+1,

whence, s7(n —7(j) + £+ 1) = m, for i < j and also for i > j.
In the last equality, 7,4, m and n are known and ¢ is unknown
and from this equality we obtain uniquely 3.
With this value for ¢, we obtain a unique solution for k.
The case j > m is similar.

2) It is sufficient to verify that for ¢ # j, A;A; is a union of
(A;, Aj)-projective equivalence classes A,,.
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Let the multiplication rule be:

prAxA; — U Am
mé{i,j}

From the equalities (), we obtain the map g is an onto map.

Now, we have to only show that each A,, (for m ¢ {3,;})
is (Ai, Aj)-projective, that is we have to check that Ya; € A;,
daj, € A;, such that aixajr € A, and symmetrically. This can be
easily obtained from (7).

3) An isomorphism between (S’,0) and (L/p, *,{q}) is given
by:

f:8 —L/p, f(a)={ ffz,}’ g ZZ;‘GS-

36. Remark. The paper [43] presentes a relationship between
multivalued loops and representations of atomic structures of cer-
tain 3-dimensional cylindric algebras.



Chapter 2

Graphs and Hypergraphs

Since the middle of the last century, Graph Theory has
been an important tool in different fields, like Geometry,
Algebra, Number Theory, Topology, Optimization, Opera-
tions Research, Median Algebras and so on. To solve new
combinatorial problems, it was necessary to generalize the
concept of a Graph.

The notion of a "hypergraph” appeared around 1960
and one of the initial concerns was to extend some classical
results of graph theory.

Hypergraph Theory is an useful tool for discrete opti-
mization Problems.

A very good presentation of Graph and Hypergraph
Theory is in C. Berge [442] and Harary [448].

In this chapter, we have presented some important con-
nections between Graph, Hypergraph Theory and Hyper-
structure Theory.

81. Generalized graphs and hypergroups

The following results on generalized graphs and hypergroups have
been obtained by M. Gionfriddo.

1. Definition. Let V C G, V # 0, where G is a finite non—empty

55
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set and f : G — P(G), such that:
() G-V #b
(i) Vo € V, f(z) = {a);
(iii) Vy € G—V, f(y) € P(V) and |f(y)| = n+1 for some € IN*.

The pair (G, f) is called a (generalized) graph on G of dimension n
or an n—graph.

Every z € V is called a vertez of (G, f) andeachy € G-V is
called an edge of (G, f).

A connected graph is a graph (G, f) such that V(z,y) € V2,
there exists £ = {ej, e,...,en} CG -V, with z € f(e1), y € f(en)
and Vi € {1,2,...,h — 1} = I, we have f(e;) N f(eiy1) # 0.

Now, for a non-empty set M set

Hon = {1:31 = P00 | U fta) = M}

zeM
2. Theorem. Define on H(M) the following hyperoperation *:
V(h, k) € H(M)?,
hxk= {KGH(M) |Vze M, ¢z)c | h(y)}.
yek(z)
Then (H(M), x) is a regular hypergroup.
Proof. Let us verify first the associativity law, that is
V(h,k,€) € H(M), h*(k*£) = (h*k)*L.
First of all, we check that Vo € M, V (h,k,£) € H(M)3, we have

U ( U h(y)) = U h.

tef(z) \yek(t) yE U k()
tef(x)
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On the other hand, we have:

ue U (Uh(y)) =>(3t1€£(:l:):ue U h(y))=>

tel(z) \yek(t) y€k(t1)

= ue U h@).

U k(t
yetEt(z) ( )

On the other hand,
ue U hy)=(Bne U k() :

U k(t ted
ve, U k() et@)

u € h(y1)) = (3t1 € &(z) : y1 € k(t;) and

u€h(y)=uve Y hly)=uve | (Uh(y))

yek(t1) teb(z) \yek(t)

For any (h, k) € H(M)?, we denote by ay x the element of h * k, for
which
Ve M, an(z) = |J h(y).

y€k(z)
We have:
u€hx*(kxf)= U h*u=—
u€kx*l
= (u; €k*l:u€h*xu) =

— (Bulek*E:V:zEM, u(z) C U h(y)) =

y€ui(z)

= |Vee M, u@)c U h»)= U (Uh(y)) =

]
yete((z)k(t) tel(z) \yek(t)

= (V.’IJ eEM, U(.’ZI) - U ah,k(t)) =
tel(x)

= ucapr*xl=uc (hxk)*¥.



58 PIERGIULIO CORSINI and VIOLETA LEOREANU

Conversely,

ue(hxk)xl=ue Jvsl= Buuehrk:ucuvy*l) =
vEhxk

:(Hvleh*k:VxeM, uwz)c Juwui)c U (U h(y)):

ted(z) tel(z) \yek(t)

= U h(y) | = (V:v €M, u(z) C U h(y)) =

YE U k(t) y€ag, ()
ted(z)

= uch*rae=>u€ |Jhrv=hx(k=0).
vek*L
Therefore, V (h, k,£) € H(M)3,
hx(kx€)=(hxk)x*L.

Now, we shall prove that H(M) has at least an identity and any
element has an inverse.

Let T ={i € H(M) |Vz € M, z € i(z)}. Ifi € Z, then
Vhe H(M),Vz € M,

h(z) C ( U i(y)) ﬂ( U h(y)),

yEh(z) €i(x)

hence h € hxiNi*h.

Therefore, 7 is the set of identities of H(M).

Now, let h € H(M) and Z), = {k € H(M) |Vz € M, k(z) =
={ye M|z € h(y)}} If k €T, then

VzeM,ze () h(y)n () k).
yek(z) yeh(z)

If : € T is such that i(z) = {z}, Vz € M, theni € hxkNk*h.
Therefore

VheH(M), 3T, € P*(H(M)) :Vk €Tn, hxkNk+hNT #0,
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that is any element h € H(M) has an inverse.

From this, we also obtain the reproductibility of (H(M), *).

Indeed, Vi € Z, Vh € H(M), we have h € i x h. Moreover, for
any k € H(M), 3 € Z, Ik’ inverse of k, such that 7 € k* k’. Then,
there is u € k' * h, such that i € k x u.

Similarly, there is v € H(M) such that h € v * k. ]

3. Theorem.
(i) For every M # O, the hypergroup (H(M), *) is lefi-reversible;

(i) For |M|> 1, (H(M),*) is not right-reversible.

Proof. i) Let (¢,h, k) € H(M)*. If £ € hxk and u € H(M) is such
that Vo € M, u(z) = M, then
VeeM, k(z) C | uly) =M,
yel(z)
hence k € u x £.
ii) We shall prove that there exist (h,k,£) € H(M)3® and
To € M, such that £ € h x k and for every inverse v of k,

h(zo) 2 U ).

y€v(zo)
Let a,b be two distinct elements of M. Let (h, k,£) € H(M)?
be such that:
h(a) = {b}, h(b) =a and Vz € M — {a, b}, h(z) = M;
k(a) = {b} and Vz € M — {a}, k(z) = M and
Vz e M, lx) = {a}.
Since |J h{z) = M and f € h*k if and only if (f(a) = {a} and

zeM

Vz e M —{a}, f(z) C M), it follows that £ € hx k.
Moreover, since for every inverse v of k,

IEDES {ge’H(M)IVxEM, g(z)c U Z(y)={a}}

yev(z)
and h(a) = {b},

we have h ¢ £ *v. =
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4. Definition. A subgraph of (G, f) is a graph (G, f) such that
GCG and f=f/G.

5. Definition. Let (G, fi) and (Gs, f2) be two graphs. The map
P : G1 — P*(Gy) is called a generalized multihomomorphism (or,
simply a GMH) from (G, f1) to (G2, f2) if

() VzeG, U vw)= U )
y€fi(z) yeP(z)

(i) Vy € Gi — W, if fi(y) = fily) U{y} and Y = LAJJ/)(t),
te f1(y)

then (Y, fo/Y) is a connected subgraph of (G2, f2).

6. Definition. Let (G, fi) and (Ga, f2) be two graphs. The map
@ : Vi — P*(V,) (where Vi € {1,2}, V; is the set of vertex of
(G, fi)) is called an Ore multthomomorphism (or simply an OMH)
from (G, f1) to (Go, f2) f VX C Vi, X # 0, such that 3y € G, —W;
with fi(y) = X, the set | p(t) is the set of vertices of a connected

teX
subgraph of (Gs, f2).
Let (G, f) be a connected graph. Let Hg = {¢ | ¢ is a

GMH in (G, f), Uv(z) =G, Vye G-V, | |J ¥(t)| > 1} and
zeG tej”(v
v)
o: HZ — P*(Hg) defined as follows:

V(h,k)EH?;, hok= {EEHG|V$EG, {(x) C U h(y)}
y€Ek(z)

Let K¢ = {¢ | ¢ is an OMG in (G, f), Ugo(x)zV,VyGG’—V,

€V

U ()] > 1} and * : K% — P*(K¢) defined as follows:

tef(y)

V(h,k) € K2, h*k:{t’eKG[Ver, () c U h(y)}.

y€k(z)
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7. Theorem.
(i) (Hg,o) is a regular hypergroup;
(i1) (Kg,*) is a regular hypergroup.

Proof. i) For any (h,k) € H%, let as; be the map defined as
follows:

VreG, ap k :L‘) U h(y)
y€k(z)
Since Vy € G =V, | |J k(¢)
tef(y)
Moreover, we have ap x € hok. So, V (h, k) € H%, we have hok # 0.
Now, let us verify the associativity law.
We have V (h, k, £) € HZ,

> 1, we obtain that apr € Hg.

u€(hok)ol=u€hoary=>u€ho(kol)and
vEho(kol)=>v€ap,ol=veE(hok)ol.

Finally, let us notice that if i € H(G) is such that Vz € G, we have
that i(z) = z, then 7 is an identity GMH and i € Hg.

If pe H(G) issuch that Vz € V, u(z) =V andVr € G-V,
p(z) = G, then p € Hg and for any ¢ € Hg, we have i € ounpuotp.

ii) Similarly, for any (h,k) € Kg, let b, be the map defined
as follows:

Vz eV, bhk U h(y)
y€k(z)
Since Vy € G -V, U k(t)] > 1 it follows that b, € K¢ and
tef(y)

bh,k € hxk.

Now, let us verify the associativity law. We have

ueE(hxk)xf=u€h*xby=>u€chx(kxl)
vEh*x(k*xf)==vEbypxl=vE (hxk)*L
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Finally, Vz € V, if i(z) = {z}, then i € Kz and Vh € Kg,
heixhNhxi lfVz eV, n(z) =V, then n € K¢ and Vh € Kg,
tEN*xhNhxn.

8. Theorem. There ezists a homomorphism from (Hg,o) to
(KG'-/ *).

Proof. Let F' : Hg — K¢ defined as follows: V¢ € Hg, F(¢) =
= 1/V. We have ¥/V € Kg.

For any (h,k) € HZ, if ¢ € F(hok), then there exists ¥ € Hg
such that F(y) = ¢/V = p and Vz € G, ¢(z) C |J h(y). For

y€ek(z)
any x € V, we have

pxy=v@@)c U ry= U @®/V)y),

yEk(z) ye(k/V)(z)

whence ¢ € F(h) * F(k). (]

§2. Chromatic quasi—canonical
hypergroups

The quasi—canonical hypergroups were utilised by St. Comer to
establish connections with edge—coloured graphs.

Let C be a non-empty set of colours and ¢ an involution of C,
that means £o0 & = 1¢.

Let V be a set of vertex. A pair (z,y) € V? with z # y is
called an edge. For any a € C, let C, be a binary relation on V.

A gystem V =< V,C, >.cc is called a colour scheme if the
following conditions are satisfied:

1° {C, | a € C} is a partition of {(z,y) € V2 | z # y},

2° VaeC, Ceay = {(y,2) | (z,9) € Cu};
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3Vael Vz eV, Jy eV :(z,y) €C,, that means each
vertex has an edge of each colour emanating from it;

4° if a,b, c € C, then the following implication holds:
Ccﬂca00b7é@:>cccoaocba

where ”0” is the composition of relations.

9. Remark. Va € C, C, is thought of as the set of directed edges
with colour a in the complete directed graph with no loops on the
set V.

The involution £ guarantees that the colour assigned to an edge
(y,x) depends only on the colour assigned to the reverse directed
edge (z,y) and not on the particular (z,y), so we can say that
colours a and £(a) are paired.

If Va € C, £(a) = a, that means the colours are self-paired,
then the colours schemes can be pictured by colouring the edges of
undirected graphs.

A partial colour scheme is a system V =< V, C, >.ec, which
satisfies only the conditions 1° and 2°.

Notice that two special cases of the notion of colour scheme
were been widely studied:

1. homogeneous coherent configurations (see D.G. Higman [449)),
which are studied via matrix algebra, because of so called in-
tersection numbers. An intersection number is the number of
(a, b)-paths from z to y, where (z,y) €C,. In a homogeneous
coherent configuration, a such number is independent of the
choice of (z,y) € C..

2. association schemes, which are homogeneous coherent confi-
gurations with £(a) = a, for all a € C. Associative schemes

have a large literature. We mention only Bose and Mesner
[30].
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Some of the important association schemes are those associated
with distance-transitive and strongly regular graphs (Biggs [444],
Cameron and Van Lint [33]).

Let us associate now a quasi—canonical hypergroup with a colour
scheme V =< V,C, >,cc.

Let e ¢ C. We shall consider the following colour algebra on V:

Ay =<CU{e}, o0, e >,

where the inverse is defined by a™! = £(a), fora € C and e7! =e.
The product is defined by: ane = eoa = a, for a € C U {e},
V(a,b) €C?,b#a !, anb={ceC|C.C Cy0Cs} and Va € C,
anat={ceC|C.CCpoCu1}U{e}. It results the following

10. Proposition. Ay is a quasi—canonical hypergroup with the
unit e.

11. Definition. A quasi—canonical hypergroup is called chromatic
if it is isomorphic to Ay.

In the following, we shall present an important example of
chromatic quasi—canonical hypergroup.

12. Definition. Let p be an equivalence relation on a quasi—
canonical hypergroup (H, o).

1. pis called a full conjugation on H if the following implications
hold:
zpy = x py ™
z€zoy and zpz = I(/,y’) € H?,
such that «'pz, y'py and 2’ € 2’ oy’

2. pis called a special conjugation if 1) holds and, moreover, zpe
implies x = e.

13. Theorem. (see Comer [46]) Let (H, o) be a quasi—canonical
hypergroup and p an equivalence relation on H. Then
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p s a full conjugation on H if and only if ({p.|z€H},") is a quasi-
canonical hypergroup, called a (double) quotient of H and it is de-
noted by H//p. Notice that ”-” is the induced operation on the set
of p-classes (that is p, € py-py <> 3z’, Iy : zpz’,ypy', z € ' 0y)

Let us denote by Q?(Group) the set of all quasi—canonical
hypergroups isomorphic to a double quotient of a group.

14. Examples The following are full conjugations on a group G:

1. any congruence relation p on G is a full conjugation and G//p
is just the usual quotient group;

2. if H is a subgroup of G and pg C GX@G is defined as follows:
Tpyy < HxH = HyH,
then pg is a full conjugation on G.

3. if K is a group of automorphisms of G and p is defined as
follows:

zpy <= Jo € K : y = o(x),

then p is a special conjugation on G.

Utumi [396] used special conjugations of groups to obtain im-
portant examples of cogroups.
We have:

15. Proposition. If G is a group and p is a full conjugation on
G, then pe is a subgroup of G.

We point out that the double quotient of groups are related to
chromatic quasi—canonical hypergroups.

16. Theorem. FEvery quasi-canonical hypergroup in Q?(Group)
is chromatic.

Proof. Let p be a full conjugation on a group G. Then p, = H is
a subgroup of G.
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Set C={p: |z €@G, p, # H}, V ={Hz |z € G}, Va € C,
E(a)=a! and C, = {(Hz,Hy) € VZ | zy~! € a}.

It can be easily verified that V =< V,(, >4cc is a colour
scheme, which is usually called the regular colour scheme represen-
tation of G//p. In order to verify the implication: C, N C, o Cp#)
= C, C Cy0Cy, we show that c € a-b (in Gf/p) <= C, C Cr0Cy
for any a, b, c € C.

Indeed, if c€ a-b (in GJ/p) and (Hu, Hv) € C. then there
exist r€a and s € b, such that uv™! = rs. Denote sv by 2. Then
(Hu,Hz) € C,, since uz™! =uv~ls™! =r € a and (Hz, Hv) € C},
since zv™! = s € b. So, (Hu, Hv) € C,0C} and hence C, C C,0C,.
Conversely, if C, C C,0C} and z € ¢, then we have (Hz, H) € C,,
so there exists z € b such that (Hz, Hz) € C,, that is 27! € a,
whence z = (zz71)z € a-b. Therefore, ¢ C a-b in Gfp. Let
< CU{eo}, 0,7}, ep > the quasi—canonical hypergroup associated
with the colour scheme V =< V,C, >4cc -

Finally, we have only to notice that ¢ : GJ/p — C U {eo},
w(pz)=pz and @(pe) = € (eo is the identity of C U {eo}) is an
isomorphism. n

§3. Hypergroups induced by paths
of a direct graph

The following results on graphs and hypergroups are due to I.G.
Rosenberg.
These hyperoperations have also been considered by P. Corsini.

17. Definition. We say that G = (V, E) is a directed (simple and
loopless) graph if V' is a nonvoid set and E a binary areflexive rela-
tion on V (i.e., E C V2 =VxV and (v,v) € p for no v € V). For
(z,y) € V2 a path from x to y or an x — y path, is a finite sequence
< 2p, ..., Z2m > over V, such that

(i) £ =20, Y= 2m
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(ii)) foral 0<i< j<m, z =2z, =1=0, j=m,
(iil) (zi,2i41) € E for all i € {0,...,m — 1}
For every z € V we consider (z) is an  — z path.

We assume throughout that G is connected in the sense that
for any (z,y) € V2, there is at least one = — y path.

Let o1 : V2 — P*(V) be defined as follows: Yz € V, zo,2 =
= {z} and V (z,y) € V2, z # y, T o1y is the set of all vertices on all
z — y paths, that is u € z o,y if there is a  — y path < 2, ..., 2 >
and there is 0 < ¢ < m such that u = z;.

Let o5 : V2 — P*(V) be defined as follows: Vz € V, z o,z is
the set of all vertices on all  — z paths and V(z,y) € V2, z # v,
Z 09y = T 01Y.

18. Definition. We say that a vertex set B separates a vertex set
A from a vertex set C (in that order) if every path starting from
A and ending in C meets B. If A is a singleton {a} we say that B
separates a from C and similarly B separates A from ¢ whenever
C = {c}.

Let us introduce the following property (a) of (V,o;) (where
i € {1,2}), which consists in two parts: (a;) and (az). There are:

(o) If < 2, ..., 2m > and < wy, ..., w, > are paths and 0<i<k<m
and 0 < j < r < n are such that the following conditions
hold:

(1) 20 # 2zm and wp # wy, if i = 1;

(2) 2z =wj, 2z = w, while the sets {z;1,..., 2,_1} and
{wj+41, ..., wn_1} are disjoint;

(3) {wr41,---»Wn-1, 2i, ..., Zm } separates the set wp o z from
w,;

(4) each of the sets {zo, ..., 2k, Wjt1, ..., Wr—1} and {wp, ..., wr_1}
separates w, from z,,;
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then there is y € 29 o wp such that w, is on a y — z,, path.

(o) If < 29, ..., 2n > and < wy, ..., w, > are paths and 0<k<i<m
and 0 < r < j < n are such that the following conditions
hold:

(1) 20 # 2z and wp # w, if 1 = 1;

(2) z; = wo, zx = w; while the sets {zx41, ..., 2:-1} and
{w, ..., w;_1} are disjoint;

(3) {=o,---, 2i, w1, ..., wy_1 } separates w, from z,, o wy;

(4) both sets {w,41, ... w,} and {Wy41, ..., Wj, Zk41, -y Zm }

separates zp from w;,

then there is y € 2, o wp such that w, is on a zy — y path.

We say that G satisfies (o) if G satisfies both (a) and (a3).

19. Theorem. The following statements are equivalent for a di-
rected connected graph G and the associated hypergroupoid < V,o0; >

(te{1,2}):
(1) (V,0;) is a semihypergroup;
(2) (V;0;) is a hypergroup;
(3) G satisfies (a).

Proof. We shall denote (V, 0;) by (V, o).

(1)==(2). Let (V,0) be a semihypergroup and (z,y) € V?
be aribtrary. Notice that y € (z oy) N (y o =) and consequently
VC(xoV)N(Vox). Clearly, zoVCV DODVozandsoVz eV,
zoV =V =V oz. Therefore, (V,0) is a hypergroup.

(2>=(3). Let (V,0) be a hypergroup. To prove (o) let
(20, .-y 2m) and (wp, ..., w,) be two paths satisfying the conditions
(1) and (2) of (o). Clearly, w, = 2; € 2902z, and w, € Wpo(2p02y,).
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Since (V,o) is a hypergroup, wp o (2 © 2zp) =
= (wp © ) © Zm. Thus w, € (wp 0 2p) 0 2, and so there is y € wyo 2o
such that w, € yo 2, proving the conclusion of (a;). Next suppose
that the condition (2) from (a2) holds. Then wy = z; € 2 © 2p;
hence w, € (20 © zm) © Wn, = 2 © (2, © wy,) Which is the conclusion

of (az).
(3)=(1). Let (a) hold.
L. Let (z,y, 2) € V3. We shall verify that
) (zog)orDz0(yo2)

1) First, suppose that either y # z or (V,0) = (V,0,) that is
y oy is the set of all y — y paths. Let u € z o (y o z) be
arbitrary. Then there exist an y — z path < z,..., 2m >,
0 <t £ mand an x — 2z path < wy,...,w, > such that
u = w, for some 0 < r < v. Denote by ¢ the least index such
that wy € {2, ..., 2m} = Z and let wy = z.

1° First, suppose that r < g. We claim that < wy, ..., wq, Zh+1, ---»
Zm > is a path. Indeed, < wy,...,wy > and < 2y, ..., 2, > are
paths and {wy, ...w, } is disjoint from {2441, ..., 2 } ON account
of the minimality of ¢. Thus u = w, € 02 C (z o y)oz so,
in this case, the inclusion (x) holds.

2° Let us consider now 7 > ¢. If u € Z then u € yoz C (zoy)oz
and the inclusion (*) holds. Thus we may assume that u ¢ Z.
Then thereare g < j<r<n<vand 0 <7< k < msuch
that

X) Az, -z 0 {wy, . we} = {z, 2} = {wy, wa}
We have two cases:

a) Let w;=2; and w,=2;. Then (o, ..., 2;, Wn_1, 2k, ---, Zm) 1S
an y — z path, henceu € yoz C (zoy)oz.
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b) Thus let w; = 2 and w, = 2z;. We try to take advantage
of the following three paths.

b1)

bg)

bs)

by)

The u — z path A = (w,, ..., Wn_1, Zi, ..., 2m). If the
set Y = {wy41,....,Wn_1, 2i, ---, 2Zm} does not sepa-
rate X = z oy from u = w,, then thereist € z oy
such that the vertex w, is on a t —w, path u sharing
only w, with A, hence u € toz C (zoy)o 2z and
the inclusion (*) holds. Thus we can assume that Y’
separates x oy from wu.

We try to use the y—u path (o, ..., 2k, Wjt1, .., Wy}
If the set U = {2, ..., 2k, Wjt1, ..., Wr—1} does not
separate w, from z,,, then u = w, € yoz C (zoy)oz.
Thus we can assume that U separates w, from z,,.

Finally we try to use the z — u path (wy, ..., w,) . If
V = {wo,...,w,_1} does not separate w, from 2y,
then u = w, € 02 C (z o y) o 2. Thus we may
assume that V separates w, from z,,.

In the remaining case the condition (a; ) assures that
u € (zoy)oz.

2) Let (V,0) = (V,01) and y = z. Then zo(yoy) =z0y C
C (z oy) oy as required.

II. Let (z,y, 2) € V3. We shall prove that

(#)

1) First, suppose that y # z or (V,0) = (V, 02). Let u € (zoy)oz.
Then there are an z — y path (29,...,2m), 0 <t < m and a
2z — z path (wy,...,w,) such that there is 0 < 7 < v for
which v = w,. Denote by ¢ the greatest index such that
wy € Z ={2,...,2m} and let w, = z,.

(zoy)ozCzo(yoz)

First, suppose that r > ¢. Since (2o, ..., 2p, Wg41, ..., Wy) is an
z — z path, we obtain u = w, € 02 C zo(yoz2) and the
inclusion (##) is proved. Thus let r < g. If u € Z then again
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u € zoy C zo(yoz). Thus we may assume that u ¢ Z. Then
there are 0 < j <r <n < g¢gand 0 <i <k < m such that
(X) holds.

a) Let w; = z; and wy, = 2. Then (2, ..., z;, Wjt1, .., Wn-1,

2k, -

.yZm) IS an £ — z path and sou = w, € xo2 C

Czo(yoz).

b) Thus let w; = 2z and w,, = 2;. We try to use the fol-
lowing three paths.

by)

The path A = (z, ..., 2k, w1, ..., w,) . If the set ¥ =
= {zo, ---, 2k, W1, ..., Wr_1 } does not separate w, from
Zm © Wy, then there is w € 2, ow, = y o z such
that w, is on a zy — w path; consequently u = w, €
€ zo(yo z). Thus we may assume that Y separates
w, from 2z, o w,,.

We try to use the path (w,,..,w,). f ¥ =
= {Wr41, ..., W, } does not separate zy from w,, we
have w, € £ 0z C z o (y 0 2). Thus we may assume
that Y separates 2z from w,.

b3) Finally we try to use the path @y,...,w; zit1, .., 20

If A= {w,,.., wj,241,..., 2m} does not separate 2y
from w,, then u = w, € yoz C (yo 2)oux.
In the remaining case the condition (as) yields
u€ (yoz)ou.

2) Finally let y = z and (V,0) = (V,0;). Then (yoy)oz =
=yoz C yo(yozx). This concludes the proof. ]

§4. Hypergraphs and hypergroups

We consider a general hypergraph I', and prove that it is always pos-
sible to construct from it a sequence of quasi-hypergroups Qo(T’),
Q1 (T), ..., such that if Qx(T') = Qry1(T) for some k, then there
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exists s < k such that Q,(T') is a join space. Conversely to any hy-
pergroupoid @ satisfying (1), (2) and (3) of the proposition below,
it is associated a hypergraph I'(Q) such that Qo (I'(Q)) = Q.

The following results have been obtained by P. Corsini.

20. Definition. Let I' = (H;{A;};) be a hypergraph, ie. Vi,

A; € P(H) - {0}; |UAi = H; Vo € H. Set E(z) = |J Ai. The
i TEA;

hypergroupoid Hr = (H; o) where the hyperoperation is defined by

V(z,y) € H?, z0y=E(z)UE(y)
is called a hypergraph hypergroupoid or an h.g. hypergroupoid.

21. Theorem. The hypergroupoid Hy satisfies for each
(z,y)eH*:

(1) zoy=zoxUyoy;
(2) z€zox; and
(B) y€Ezor <= z€yoy.

22. Theorem. A hypergroupoid Hr satisfying (1), (2), (3) of the
Theorem 21 also satisfies

(4) zoy D {z,y},

(5) zoy=yoz,

(6) zoH = H,

(7) (H;{z oz}scn) is a hypergraph,
8) (zoz)oz= ] zoz

Tr€z0Z

(9) (zoz)o(zoz)=zo0z 0T



APPLICATIONS OF HYPERSTRUCTURE THEORY 73

Proof. It is enough to prove (8) and (9).
(8) We have (zroz)oz = |J zoz. Then from (1), zozoz =

zExox
= |J (zozUzoz); now from (2) it follows zozoz = |J zoz,

zEzox zExox
and finally from (3) we obtain (8).
(9) We have:
(xox)o(zox) = |J aob= |J ((@oa)U(bod))=
{a,b}Czox {a,b}Czox

= U aoa= U aoaq=xoxrocx.
acrox reaoa

23. Remark. It is clear from (5) and (6) of Theorem 22, that an
h.g. hypergroupoid is a commutative quasihypergroup.

24. Theorem. A hypergroupoid (H;o) satisfying (1), (2) and (3)
of Theorem 21 is a hypergroup if and only if the following condition
is valid:

(1) V(a,c) € H?, cococ—cocCaoaoa.

Proof. We prove the implication ”"<=". For (1) it is enough to
verify the associativity. We have:

V(a,b,c) € H3, (a o b)oc = (aoca U bob)oc = (aoa)oc U (bob)oc,
ao(boc) = (boc)oa = (bob)oa U (coc)oa.

Moreover,

(aca)oc = |J uwoc= |J ((uou)U (coc)) =

u€aoa u€aoa

= cocU ( U uou) = coc U aoaoa (by Theorem 22, (8)).

uc€aoa
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Then we also have (bob)oc = bobob U coc.

Therefore (aocb)oc = aoaoalUbobobUcoc and moreover ao(boc) =
= (boc)oa = bobob U cococ U aoa.

Set P = aoaoa U coc, Q) = cococ U aoa.

It is clear that (aob)oc = bobob U P, ao(boc) = bobob U @ and
also P = (aocaoa — aoca)Uaoa U coc. By the hypothesis (7) we have
aoaoa — aoa C cococ. Since coc C cococ, it follows P C ). In a
similar way the inverse inclusion is proved and then the implication
follows.

We prove the implication ”==>". From the associativity it fol-
lows: V (a,c) € H2, (aca)oc = ao(aoc).
From above we have also: (aca)oc = coc U acaoca, ao(aoc) =

= |J aov = |J (acaUwov) = aoa U ( U vov) U ( U vov) =

v€Eaoc v€aoc vEaoa veEcoc
= goaoalcococ (by Theorem 22, (9)), consequently cococ—coc C

Caoaoa. ]

25. Corollary. If a hypergroupoid satisfies (1), (2) and (3) of
Theorem 21 and the condition:
() Vz, zoxoz=zouz,

then it is hypergroup.

26. Definition. An associative h.g.-quasihypergroup is called a
h.g.-hypergroup.

27. Theorem. If the hypergroup Hr = (H;o) satisfies (1), (2),
(3) of Theorem 21, then it is a join space.

Proof. It is sufficient to prove that the following implication is
satisfied:
zfyNz/w# 0 =>zowNyoz #0,

where z/y = {z | € zoy}. We have:

u € z/yNz/w <= [z € uoy and z € uow).
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Moreover, * € uoy <= z € uou U yoy and z € uow <=
z € uou U wow. Four cases are possible:

(1) If z € uou, z € uou, then u € zox N zoz and therefore
U € zow Nyoz.

(2) Iz € uou, z € wow, it follows w € zoz, hence w € rowNyoz.
(3) If z € yoy, z € uou, then y € zoz, it follows y € xow Nyoz.

4) If x € yoy, z € wow, then w € zoz it follows w € zow Nyoz.
Y

28. Theorem. Let (H;o0) be a quasihypergroup satisfying (1), (2),
(3) of Theorem 21. Then there is a hypergraph T' such that (H; o)
is the h.g.—quasthypergroup associated with T'.

Proof. Let I" be the hypergraph (H;{z,y}senyeroz)-
Then for all z in H, we have:

E(z)= | {z,2} = U {z,2} = 20z
zExox rEZ02Z
Then for all (z,y) in H?, xoy = zox Uyoy = E(z) U E(y), so the
quasihypergroup < H;o > is the h.g.-hypergroupoid associated
with the hypergraph T". n

29. Theorem. Let (H;0) be a hypergroup satisfying (1), (2), (3)
of Theorem 21, Hy = (H;00), Hy = (H;0y),..., H = (H;o0f),... the
sequence of the hypergroupoids obtained by setting V (z,y) € H?,
Togy=20Y, Vk 20, % 0441 T =2 O T O T, T Op41 Y = T Oy
zUy o1 y. ThenVk >0,

() The hyperoperation oy, satisfies (1), (2), (3) of Theorem 21.

(B) ((z op T ok ) o (x o T 0k T)) Ok (T Ok T 0 T) = T Opy42 T.
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Proof. (a) We prove (a) by induction on k. Let us suppose that
oy satisfies (1), (2), (3). We prove that the same happens for o;.

(1) is satisfied by definition.

(2)x €z oz Cxopxopx=2x0ry by the inductive
hypothesis.

(3)if y € z op41 T = x o T o x, then, by the induc-
tive hypothesis, there is 2 € = or x such that y € 2z op = =
=z o, z2Ux of z. If y € zopx, then, by the inductive hypo-
thesis x € y op ¥y C y ox41 y. If not, we have y € z o z from
which 2z € y o y, but we also have £ € z o z and therefore,
by Theorem 22, (8), z € (y o y) or (Yo y) =y o y 0 ¥y =
=Y %41y

(B) For any X C H

XoX= |J wyoz= |J (yoyUzoz)= |Jzoz.
(y,2)eXxX (¥,2)EXXX zeX

Then, for any X C H, by Theorem 22, (9)
XoXoX C (XoX)o(XoX) =

= Uyoy=U(Uy°y)=

yeXoX zeX \yE€zox
= U (woz)o(xoz) =
zeX
= U zoxoxr C XoXoX,
zeX
we have

XoXoX = U Toxox.
zeX

Hence specifying X = z oy o £ = x ory1 x, by Theorem 22, (8)
Xopg Xop X = UZOkZOkZ—_—
z€X

= U Z 041 2= (T Oopy1 T) Opy1 (T Op4y z) =
TETOkt1 T

=T Ok41 T Ok41 T =T Op42 T.
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30. Theorem. FEvery hypergraph I' =< H;{A;} > determines
a sequence of quasi-hypergroups Qo = (H;op), Q1 = (H;01),...,
Qm = (H;0m),... such that Vk > 1, Qi is an enlargement of Qg—1.
If there exists s such that Qs = Qs41, then Qp. is a hypergroup for
some integer Pr.

Proof. Let Vz € H, Ey(x) = E(z), Exya(z) = |J Ex(y). We
yEEy(z)

have a sequence of hypergraphs I'y, = {Ex(z) | z € H} and of the

associated quasihypergroups Hy = (H; o), whereVz € H,Vk > 0,

z o ¢ = Ei(z). From Theorem 22, (8), and Theorem 29, (), for

Vk>0, Yo € H, z ogy1 = FEpp1(z) =2 op ¢ o z, and

V(z,y) €EH? zopy=1x o0, zUY 0 y.

It is clear that x opy 3 £ D o x.

Set m(z) = min{k |  og41 T =z of z}.

We have that Vs > m(z), ¢ o, £ = & op,;) z. To see this, it
is enough to prove the following implication: T oy £ = T oz —
Z Op42 T = T 0k4q «. Indeed, applying in turns Theorem 29, (5)) and
Theorem 22, (9)

LOk42T =

= (zorzorx)ok(zopxorz)or(zorzorz) =

= (T 041 %) ok (T Ok41Z) Ok (TOx11 T) =

= (zorz)or (zopz)or (zorz) =

= T 0k T Ok ) o (T Ok T) = (T Op41 %) Ok (T Ok T) =

= (xokx)ok(xokx)=a:okxok:c=xok+1x.

Now let
P, = max{m(z) | z € H}.

It is clear that in (H;op), Vy € H, yop.yop. y=yop. y and there-
fore, by Corollary 25, the hypergroupoid H; op) is a hyper—
group. ]
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31. Definition. Denoting by S the class of semihypergroups, set

ar =min{s € N* | @, € S}.

32. Examples.

(1) If the edges are disjoint, i.e. ¢ # j => A; N A; # 0, then (7')

(2)

(3)

(5)

33.

is clearly satisfied and therefore the hyperproduct defined in
(0) is associative.

Let I' = {{1}, {1,2}, {3,4}}. Also in this case Hr satisfies (')
and therefore it is associative.

Let I' = {{1,2},{2,3}}. We have 1ol = {1,2} # lolol =
= {1,2,3}. Then Hr does not satisfy ('), but is satisfies (7),
and therefore by Theorem 24,

Hp is a hypergroup.

Let TV = {{1,2},{2,3},{3,4},{4,5}}. It is (102)03 =
= (1,2,3)03 = {1,2,3,4}; 10(203) = {1}0{1,2,3,4} =
={1,2,3,4, 5}; and therefore Hr~ is not associative. Remark:
(1ol)o(lol) = lolol = {1, 2,3}, ((1o1l)ol)ol = {1,2,3,4}.

Let ' = {{1,2},{2,3}, {3,4}, {4, 5}, {5,6},{6,7},{7,8}}. We
can check that 4054 = 50,5 = H,30,3=H —{8},Vz € H,
zogz = H. Then in < H; o, > the condition (7) is satisfied
and therefore, by Theorem 24, < H; oo > is a hypergroup,
different from the total hypergroup. Then it is clear that
2=ar < Pr=3.

Theorem. Let I' be a connected finite hypergraph, let

Zg, Z1, ..., Tp, form a trail from xo to x,,, that is, A;,, ..., A;, exist such
that {zx_1,zx} C A; forallk € 1,2, ...,n and let Qo = Hr, ..., Qp,,
be the sequence of quasi-hypergroups associated with I'. Then

)

Vi, Vk, Vs:0<s<2% =z, € z;0r ;.
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(2) {z:i| 0 < i< n} Cxpogn) To, where
g(n) = min{m € N | m > log,(n)}.

(3) There is m such that (H; oy, ) is a total hypergroup.

If v = min{m | (H; o,,, ) is total }, we have:
ar < Pr =7 < g(6(T")), where 8(T) is the diameter of T.

Proof. (1) For k = 0 obviously {z;,zi11} C z;002;. Let us sup-
pose: Vi,Vs:0<s<2F x;,, € z;04 z;, by induction we have:

for 0 <t < 2%

Titstt € Tits Ok Tits C Tips O Ty C T; Of Ty Of Tj = X3 Opy41 T;

thatis, Vr: 0 <r <281 g, € ;0141 ;.

(2) follows directly from (1).

(3) The first statement is a consequence of (2) and of the hy-
pothesis of connectivity. For the second, it is enough to remark that
V (z,y) € H? there is a path ¢ from z to y of length d(z,y) < 6(T).
Then Vy € H, y € T0ga(zy)) T C T og5(r)) = and therefore Vz € H,
T Og(5(m) T = H. ]

34. Theorem. Let I’ be a connected finite hypergraph. Then we
have: ar = Pr — 1.

Proof. It is clear that ar < Pr — 1. Indeed, if we let k = Pr — 1,
we have Vx € H, x o x oy x = H and therefore

Vv &€ H, vopvorv —vorv C TOLT Ok,

whence, from Theorem 24, < H; o, > is a hypergroup. Let us
prove now that ar > Pr —1 that is, if o is associative, k > Pr—1.
From Theorem 24, we have

V(z,y) € HXH, yoryory D TOxTOL L — L Ok I.

In order to prove that, Vz € H, 2 €y o, y o, y we remark two cases
can occur:
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(1) z og 2422 0f 2 0 2, then = € z 0k z exists such that z¢ z o z;
it follows from (3) Theorem 21, z ¢ z o,  but = € 2z o4 z implies
Z € x oy x, therefore 2 € zop oz — T o x C Yyoryory.

(2) zogz = zo zor 2. Since I' is connected, zoxzorz = H.
If 2z ¢ yory1y, it follows y ¢ zopy; 2, a contradiction, then
ZE€Yoru1Yy-

Finally, y og41y = H. Since that is true for Vy € H, it follows
k+12Pr,i.e.arZPr—l. ]

35. Definition. Let I' = {H; {4;},} be a hypergraph and let z,y
be points of H. We set xRy if and only if either £ = y or a trail
exists form z to y, in other words R is the least equivalence relation
which contains the relation R’ defined by T, i.e.

zR'y <= 35 : {z,y} C A,.
Vz € H, let R(z) be the equivalence class mod R, determined by z.

36. Definition. If ' is any finite hypergraph, and C,Cy, ..., C,
are the connected components of T', set 7+ = max{r¢ | 1 < ¢ < g},
Vz € H, let I'(z) be the connected component of I' to which z
belongs.

37. Theorem. Let T be a finite hypergraph. ThenVz € H, we
have T o, T = R(z).

Proof. We prove the theorem by induction. It is clear that Vz,
zogx C R(z). Let us suppose zox_1 = C R(z).

We have z o, ¥ = £ 0g_1 £ og_1 z, thus, by Theorem 22, (8), if
2 € zogx, there is y € xor_y x such that z € yor_, y, therefore
zRyRx and then Vk, z o, x C R(z) whence the theorem. ]

38. Theorem. Let I’ be a finite hypergraph. Then, Vz € H, we
have z o, x = R(z).

Proof. It is immediate from Definition 36 and Theorem 37. ]
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§5. On the hypergroup Hr associated
with a hypergraph I'

In the previous paragraph, we have seen that, given a hypergraph T'
on a set H, that is a family I' = {A;}:c; of non empty subsets A; of
H such that | JA; = H, we can associate with I', a hypergroupoid

iel
defined by

VzeH, oz = UA,-, V(z,y), zory=z01zUyory
A;dz

and a sequence of hypergroupoids ((H; o ))renw+, where
fork>1

TOLT =TOk 1TOk_1T, TORY =T O TUyorYy.

Now, we consider the case I' = {(1,2),(2,3),...,(n — 1,n)}, then
the case when I’ is connected and finally when I is a tree.
The following results have been obtained by P. Corsini.

Let ” 0;” be the hyperoperation defined Vo € H, zo;z =
= {y | d(z,y) < i} (where d(z,y) is the graphic distance between
z and y, that is the length of the shortest path between z and y),

V(z,y) € H?, 20,y =z0,3Uyo0;y.
Let 6 be the diameter (if it exists) of T, that is
§ = max{d(z,y) | {z,y} C H}.

If we set xDyy <= z € yory and zR;y <= d(z,y) < i, we have
Dy = Rok-1. So, Tory = T ogk-1y. Set I(n) = {1,2,...,n}.

39. Proposition. Vs € I(n), we have

Dy(s) = sox s = {z | min{n, s + 287!} > £ > max{1,s — 2¥"1}}.
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Proof. We prove the Proposition by induction on k. Set k = 1.
We have

VselI(n)—{1,n},
sops={s—1,8s+1}, 1011 ={1,2}, noyn={n,n—1}.

It follows so; s01s={s—2,s—1,s,s+1,s+2}ifs—22>1,
s + 2 < n. Moreover,

Vs € I(n), soypsoys = {z | min{n,s+ 2} >z > max{1,s — 2}}.

Set V{a, B} C I(n), If(a, B} = {z | min{n,a} > z > max{1, 5}}
and Tx(s) = sox sor s. Now, set by inductive hypothesis:

Ti1(s) = IT(s + 2871 s — 2k1),
Then by {[74], Th. 5], we have
Ti(s) = (Tk-1(8) ok—1 Tk-1(8)) 0g—1 Tk—1(s),
whence

Tk(s) =
=(I7(s+2* 1 5~25NYop_y IP (542577 525 1)op_y IP(s+2577 5287

It follows
Ti(s) = Ip(s+2F 1 42F72 s—2F 1 _2F=2) o, IP(s42F71, s—2F 1),
Finally, /
Ti(s) = IP(s + 2~1 4 252 4 2k2 5 gh=1 _ gk=2 _ ok-2)
so we have Ty(s) = IP(s + 2F, s — 2F). =
40. Corollary. Vs € H, Vk > 1, we have $0 8 = $0gk-1 8.

Proof. Immediate.

Let us suppose now that I" is connected.
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41. Theorem.

a) If R; has not outer elements (see Def. 5, Chapter 3), then
(H; o;) is a join space. Let I' be a tree and let (H; o;) be a
hypergroup. Then

b) R; has not outer elements.
c) We have § < 2.

Proof. a) The hypothesis implies the condition 4 of Theorem 8,
Chapter 3, to be vacuous. The conditions 1,2,3 of Theorem 8§,
Chapter 3, are satisfied because R; is reflexive. Therefore (H; o;)
is a hypergroup. From Theorem 3 [38], follows that < H; o; > is a
join space.

b) Suppose to the contrary that z is outer. Then there exists
h € H such that (h,z) ¢ R?. Since I is a tree we have R? = Ry;.
Therefore (h,z) ¢ Ry; whence d(h,z) > 2i. Let m be the path
between h and x. Let p be the element of this path at a distance
2¢ from z. Then (p,z) € R? — R;, hence R; does not satisfy 4 of
Theorem 8, Chapter 3, and so (H; o;) is not a hypergroup.

¢) It follows from the following remarks:

1. If R is a relation on H, then R is transitive if and only if
Va € H, we have aogpaora = aoga.

2. If R is a symmetric nontransitive relation on H, such that
R C R?, then Hp is a hypergroup if and only if Vz € H, we
have zogzopxz = H. ]

42. Lemma. Let < H;T' > be a connected graph, i € IN* and
< H; o; > the associated hypergroupoid. Then V (a,b,c) € H3, we
have

(ao;bo;c) = K'(a,b,c) =
={A]d(a,\) <2i}U{n|db,u) <2}U{v|d(cv) <i}

ao;(bo;c) = K"(a,b,c) =
={z|d(a,z) <:i}U{y|d(by) <2i}U{z|d(c,2) < 2i}.
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Proof. We have (ao;b) o; ¢ C K'(a,b,c). Indeed,

(aoib)oic = ({y|d(a,y) <i}uU{z]d(b,z2) <i}oc=
= {u|d(u,y) <i,d(y,a) <i}U
{v|d(v,2) <i,d(z,b) <i}U{w|d(w,c) <i}.

C

So,
(ao;b)o;c C K'(a,b,c) =
= {A ] d(\ a) <2} U{p | d(p,b) < 2} U{w | d(w,c) < i}.

Let us see now that also (ao;b)o;¢ D K'(a,b,¢).

Let z € {A\|d(}, @)<2i}. Then there is ¢<2i such that d(z, a)=q.

Ifg<i,thenz €ao;a C (ao;b)o;c.

If ¢ > ¢, there is a path m between a and x, there are £ < 7 and
w € 7 such that

d(a,w)=t, d(w,z) <p=q—t<i.

Sow € ao;a and £ € wo; w C wo;c, proving z € (ao;a)o;¢c C
C (ao;b)o;c.
Analogously, one sees that {g | d(p,b) < 2i} C (ao;b)o;c;
hence
K’ C (ao,-b)oic.
In a similar way, it can be proved that

ao;(bo;c) = K"(a,b,c) =
={z|d(z,a) <} U{y|d(y,b) <2} U{z]d(z,c) < 2i}.-

43. Theorem. Let < H;T' > be a connected graph of finite di-
ameter 0. Then 6 < 2i if and only if V(a,b,c),(ao;b)o;c = H =
=ao; (bo;c).

Proof. Set 6 < 2i. Then it follows that

Vge H, {z]|d(gz) < 2i} = H,
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therefore V (a, b, c)

(ao;b)o;c=
={z | d(az) <2i} U{y | d(by) < 2i} U {z | d(az) < i} =H =
— (o | d(az) <} U {y | dby) < 2} U {z | d(az) < 2}

Whence o; is trivially associative since V (a, b, c)
(ao;b)o;c=H =ao;(bo;c)

For the converse, set V (a,b,c) € H2, (ao;b)o;c = H. Then Va we
have

H = (ao;a)o;a = K"(a,a,a) = {z | d(az) < 2i}

therefore é < 2i. [}

86. Other hyperstructures associated
with hypergraphs

In this paragraph a new type of hypergroups associated with hy-
pergraphs is defined. Some properties of their subhypergroups are
studied. This is a generalization of hypergroups associated with
graphs, given by P. Corsini. These results are obtained by V. and
L. Leoreanu.

Let (H,(Ai)ics) be a hypergraph, that is | JA; = H and
VieJ A #0. ieJ

Let z,y be two different points of H. We say that there is a
trail between z and y if there is {z = z¢,24,...,2, = y} C H and
{71,J2, - Jn} C J,such that Vi € {0,1,...,n—1}, 3ji41 € J, so that
we have {l'i,IlIi.;_l}CAjH] and ¢ ;é i = {.’IJ,‘,.’II,’.;.;[} # {xir,rc,vﬂ}.
The trail is a path if the vertices are different.

We shall denote by 7(z,y) the set of all the paths between z
and y in (H, (A;)ies)-
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If 7 € v(z,y), 7 : ¢ = %o, %1, ..., T = Yy and €} = [xk_1, Tk is
the k—edge of 7, counting from z, set a, = {j € J | 3k : ef C A;}
and a,, = U Q.
meY(z,y)

Let us suppose that (H, (A;);cs) is a connected hypergraph.
Let us define the hyperoperation on the set H as follows:

U Ajv ifz#y
Toy =1 jCasy
{:L'}, fz=y

44. Remarks.

1. 70” is a commutative hyperoperation.
2. {z,y} C z oy, so that (H, o) is a quasihypergroup.

45. Proposition. For any x,y in H, we have

(zoz)oy=zo(zoy)=zoy.

Proof. It is sufficiently to check that for any distinct z,y in H, we
have zo(zoy)=zoy. _

Let s be arbitrary in z o (z o y); then there is t € z oy, such
that s € x ot. We need to prove s € z o y.

Ift=xzthens=z€zoy.

Ift=y,then s€zxoy.

Let us suppose t ¢ {z,y}. Since t € z oy, it follows that there
are m; € y(z,y) and h € a,, such that t € A,,.

T T = Qp, 01, -+, 01,0 =Y

Since s € z ot, it results that there is w3 € 7y(z,t) and there is
k € ay,, such that s € A.

T2 1T = Lo, 51, s Bn-1,Pm =1

Let

2,0 k—1}, J={kk+1,..,m}
.2,k =1}, L={hh+1,.,n}
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‘We shall consider the following situations:

I. If there is (4, j) € ({1 UI2)xJ, such that a; = ; and there is not
(2,7) € (I1 U Iy)x Jy, such that a; = ;, set

p=min{j € o | 3L UL : a; = f;} and B, = ;.
Then the trail
z=£0,51, Bp = 5, 0541, ..., 0, = Y
is a path and s € z o y.

IL. If there is no (4,5) € (I3 U I)xJ; such that a; = §; and there
is (4,7) € (I U I))xJy, such that a = 3, set

p’=max{j€]1|31611U12:ai=ﬁj}andﬂp,—_—a,—,z

We have two possibilities:

IL1. If p) =max{j € J1 | 3t € I, : o5 = f;} then § € I; and the
trail:

I = G&p,Qy, ..., Ayt = ﬂp’7 ﬂp’—i—l) 1:3‘"1 = t: Qh4l, Chy2, -y Oln

isapathand sezoy.

IL2 f p) = max{j € J, | I € I, : a; = (B} then § € I, and the
trail:

T = &y, 0y, -"vah—ht = ﬁmyﬂm—lv 7ﬂp’ = Opty Apt 41y -y O = Y
is a path and s € z o y.

III. If there is no (7,7) € (I; U I)x(J; U Jp), such that o; = (;,
then the trail

= 180) ﬂla cey :Bm - t,ah+1,ah+2, ey O =Y

is a path and s € z o y.
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IV. If there are (3, 7) € (LUL)xJ> and (7, 3') € (I, Ulx)xJp, such
that o; = B; and oy = By, set

p = min{je€l|IHecLhUL:a =0}, Bp=0a; and
p = max{]' S | FHehUl:ar= ,Bji}, ,31/ = Q-

We shall consider the following possibilities:

IV1. Ifp=max{je€ Ji| F €l :a; =F;} and p < 7, then the
trail:

T =a0,01, .., = Bp, Bp—1, -, By = Opt, Ay y1, ..., 0 = Y

is a pathand s € xoy.

IV2 Ifp =max{j € J; | F € I : o; = B;} and F < P, then the
trail:

T = (g, Q1,...,Qp = :Bp’7,8p'+17 .o :Bp = Qp, Ap41y -, A = Y

is a path and s € z o y.

IV3. Ifp =max{j e 1 | € I, : a; = B;} and p < P, we
consider the same path as at IV.1, and we have that s € zoy.

IV4. If p =max{je L | € L : s, = B;} and § < p, we
consider the same path as at IV.2, and we have that s€ zoy. m

46. Theorem. (H,o) is a regular reversible hypergroup.

Proof. First, we verify the associativity. It remains to check that:
V(z,y,2) EH® 2 #£y+#2+#x, wehave (Toy)oz=1x20(yoz).
We show that:

(%) V(z,y,2) € H?, (xoy)oz=z02UZzO0Y.

By (%) and by Remark 20,

Y(x,y,2) € H3 (zoy)ozCxzo(yo2).
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Therefore,
wo(yoz) = (yoz)oz C yo(z0z) = (203)o0y C z0(z0y) = (zoy)ox.
Hence, if (*) holds, we have:
V(z,y,2) € H (zoy)oz==z0(yo2).
It sufficis to verify that
V(z,y,2) EH®, z#y+#2#2x, wehave (zxoy)ozCzozUzoy.

Let s be an arbitrary element of z o y and w an arbitrary element
of s 0 z. We need to prove that w € xozUzoy.
Ifs=zthenwezoz={z},sow=z2€z02Uzo0y.
Next, we consider s # z.
Since s € z oy, there are m; € y(z,y) and k € J, such that
s € Ax
712 % = o, B1y s Br=1, Bk s Bm = Y.

Since w € s o z, there are 7, € (s, 2) and h € J, such that w € A,
T2 ! T = Qp, Xy ..., Ap-1,0h, ..., Oy = 2.

Set
J1 2{0,1,...,]{?—1}, J2={k,k+1,,m}
Il :{0,1,...,h— 1}, Iz={h,h+1,,n}

We consider the following situations:

1. If there are (Z,]) € 11X(J1 8] Jz) and (i,,jl) S IQX(JI U J2)7 such
that o; = B; and oy = (), then set

pp=min{ic L|3jec hUkh:a;=0;}, ap =P,

pp=min{s € I |3j € LU L :ar =By}, ap, =Fs,-
We have the following cases:
I1. If p =min{i € I, | 3j € J; : o5 = (;} and J; < P2, then the
trail:

T = /807ﬁ17 cey ﬂﬁ] = apuap]—h “-)apz = ;31_727;8524-17 ey ﬂ’m =Y

isapathand w € zoy.
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I.2. If py =min{¢ € I, | 3j € J1 : &; = B;} and P2 < p1, then the
trail:

T = IBOMBIa sy ﬁﬁz = Opy; Apyy1, -+ ap] = ﬂﬁlu 181"71+1; sy Bm =Y

isapathandwe€ zoy.

L3. If py =min{i € I, | 3j € J2 : &; = B;} and Ps < Py, then the
trail:

T = ﬂ071617 seey /6132 = ap27a172+1’ "'7ap1 = ﬁﬁl)ﬂﬁl-Flv 7:8‘"1 =Y

isapathand w € xoy.

IL4. If py =min{i € I | 3j € J» : o = (;} and Py < P, then the
trail:

= ﬂO)ﬁlv -"7ﬁﬁ1 = aplvapl—lv "-1ap1 = :81327:6ﬁ2+17 aﬂ’m =Y
isapathandw e zoy.

IL. If there is (¢,5) € I;x(J, U J;) such that a; = §; and there is
no (%,7) € I;x(Jy U Jp), such that o; = j;, let

p=max{i € |3j€ UL :a; = [}, ap= 05
Then the trail:
z = [o,B1, -, Bp = Qp, Opy1, ..., A = 2
is a path and w € z o 2.

ITI. If there is no (4, j) € I;x(J1 U J2) such that a; = §; and there
is (4, 7) € I;x(Jy U Jy), such that a; = §;, let

p:min{z'EIzlEljeJIUJg:aizﬂj}, ap:ﬁﬁ-

We have the following cases:
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HI1. fp=min{i € I | 3j € J; : o5 = §;}, then p € J;. The
trail:

T = 507 ﬂla .y :31_7 = Qp,0p_1,...,00 = S, IBk+17:Bk+2) ceey :Bm =Y

is a path and w € z o y.

I1.2. fp=min{i € I, | 3j € J» : a; = f;}, then p € Jo. The
trail:

T = ﬂOJ;BIy =0y :Bk—lv $ = (g, (1, sy Qp = :8171 ﬁfr}-h 7:3771 =Y
is a path and w € z o y.

IV. If there is no (i,j) € (I; U Ix)x(Jy U J,), such that a; = §;,
then the trail:

T = 607 ﬂl) (233} IBk—-lv s = O, A1, ...,0p = 2
isapathand w € z o z.
Therefore, (H, o) is a hypergroup.

Since for any (a,z) € H?, we have a € Toa = ao z, it follows
that any element of H is an identity of H and H is the set of
inverses of an arbitrary element of H. Therefore, H is a regular
hypergroup.

Let (a,b,c) € H3, such that a € b o c; there is ¢ = b inverse
of ¢, be such that b € a o ¢ and there is ¥ = c inverse of b such
that ¢ € b’ o a, whence it follows that H is a regular reversible
hypergroup.

47. Remark. (H,o) is a join space if and only if (H, (A;)ics) is a
tree.

Indeed, if there is at least one iy € J, such that |4;,| > 3, this
means there are y,a,b in A;,, y # a # b # y; then we can consider
z € H, z ¢ {a,b}, such that thereis i € J : {z,y} C A;.

We have: a € A;; UA; Czoband b€ A, ,UA; Czoa,so
that z € a/bNb/a, but aoaNbob = {a} N {b} = 0. Therefore,
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(H, (A;)ics) is a graph. But the only type of connected graph, for
which the associated hypergroup is a join space is a tree
(see [71]). -

We present the following results on subhypergroups of (H,o}.

48. Proposition.

n
(i) For anyn € IN* and for any (21, ..., z,) € H", the set || z; is
a subhypergroup of H. J=1

(ii) Any finite subhypergroup of H can be written as a hyper-
product of elements of H.

(i) There are hypergraphs, whose hypergroups have subhypergroups,
that are not hyperproducts.

(iv) The only closed subhypergroup of H is H.

Proof. (i) Let S = [[ z; and a an arbitrary element of S. We
j=1
need to prove that

aoS=S.

Indeed, Vs € S, s€aos,so SCaols.
Let t € S. Then, since for any z € H, we have z oz = z and
by the associativity and the commutativity, it results:

aotCSOSznxjoHa:j:ij:S.

=1 j=1 =1
(ii) Let S = {1, s, ..., z, }be a finite subhypergroup of H. Then
S = H .’L']'.

j=1

(iiil) We can consider the following examples:
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1°. Let H = IN be the graph, for which there is an edge between
i and j, where {i,7} C IN, if ¢ and j are consecutive numbers. Then

It results that, for any {41,43,...,4,} CIN, s€ N, s > 2,
s
H ij - {k €N | Inin{ilai% "-:is} <k< max{'l:l,iz, ...,is}
j=1

is a finite set.

For ip € IN, the set S = {j € IN | j > 4p}is an infinite subhy-
pergroup of H and S is not a hyperproduct.

2°. Let (H,(A;)iew) be a hypergraph (that is Vi, 4; #  and
(JA: = H) such that: for any i € N, A; is the smallest subset of
iel
Q,., containing 7 and ¢ 4+ 1 and such that if {z,y} C A;, then
T+y
2

€ A;.

For z € IR, the number [z] is the greatest integer not exceeding z.
Then, for any {z,y} C H, we have

Ak ’ if ¢ Y
min{[z],[y]} <k<max{[x],[y]}
Toy=
T , ifx=y

whence for any m € IN, m > 2, and for any different elements
zy, X9, ..., Ty, of H, we have:

H I; = U Ak)

i=1 min{[z1],{x2],....{zm]} <k<max{[z1],[x2],-..[zm]}

that is a bounded set.
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But, for any jo € N, S = {j € H | j > jo} is an unbounded
subhypergroup of H, so S can not be written as a hyperproduct.

(iv) Let S be a subhypergroup of H, S # H and let z € S and
y € H—S. We have x € yox, so S is not a closed subhypergroup.
Therefore, H has no proper closed or invertible or ultraclosed
or complete part subhypergroup. |



Chapter 3

Binary Relations

The first connection between a hyperstructure and a bi-
nary relation is implicit in Nieminen [300], who associated
a hypergroup with a connected simple graph.

In the same direction, albeit with different hyperopera-
tions associated with graphs, went the papers by Corsini
([74], [79]) and Rosenberg ([326]) and, in the following, by
V. Leoreanu and L. Leoreanu ([238]).

Later, Chvalina ([38]) found a correspondence between
partially ordered sets and hypergroups. Rosenberg ([326])
generalized Chvalina definition, associating with any binary
relation a hypergroupoid.

Rosenberg hypergroup was studied by Corsini ([79]) and
then, by Corsini and Leoreanu ([88]), who considered hyper-
groups associated with union, intersection, product, Carte-
sian product, direct limit of relations, as we have seen be-
fore.

There are still open problems on this subject. One of
them is to find necessary and sufficient conditions for the
hypergroupoids associated with union, intersection, product
etc, to be hypergroups. Recently, Spartalis, De Salvo and
Lo Faro have obtained new results on hyperstructures asso-
ciated with binary relations.

95
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81. Quasi-order hypergroups

Quasi-order hypergroups have been introduced and studied by Jan
Chvalina.

1. Definition. Let (H,-) be a hypergroupoid. We say that H
is a quasi-order hypergroup (that is a hypergroup determined by a
quasi-order) if V(a,b) € H%, a € a® C a® and a-b = a> UV~
Moreover, if the following implication holds:

2=V =a=0b
for any (a,b) € H?, then (H,-) is called an order hypergroup.

2. Proposition. A hypergroupoid (H,-) is a (quasi)—order hyper-
group if and only if there exists a (quasi)-order p on the set H,
such that

Y (a,b) € H?, a-b= p(a)U p(b).

Proof. =" Let (H, -) be a quasi—order hypergroup. Let us define
on H, the following binary relation:

apb <> b € a’.

p is reflexive, since Va € H, we have a € a® C a°.

If apd and dpb, then d € a? and b € d® C a* = a? (since
a® = a?), so that apb, that means p is transitive.

Thus, p is a quasi-order on H and

V(a,b) € H?, a-b=a?Ub* = p(a) U p(b).

Now, let (H,-) be an order hypergroup. The conditions apb and
bpa imply a € b* and b € a?, whence a® C b* = b?, b? C a? = a?,
that means a? = b?. Since (H,-) is an order hypergroup, we obtain
a = b, so that p is an order.

"«=" Let (H,p) be a quasi-ordered set. If we define on H
the hyperoperation a - b = p(a) U p(b), then (H,-) is a hypergroup
satisfying a € a? = a® and a® = p(a), for any a € H.
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Moreover, if p is antisymmetric and if we have a® = b? (for
(a,b) € H?) then p(a) = p(b), that means apb and bpa, so we
obtain a = b. n

3. Notations. For any (a,b) € H2, we denote
L,(a,b) = p~(a) N p~1(b) and U,(a,d) = p(a) N p(b).

4. Theorem. Let (H,-) be a quasi-order hypergroup and p the
associated quasi—order on H. The following conditions are equiva-
lent:

(1) (H,-) is a join space;

(ii) for V(a,b) € H?, such that a-b C c* for a suitable element
c € H, there exists an element d € H, such that d*> C a?Nb?;

(iii) for V(a,b) € H?, such that Ly(a,b) # 0, we also have
U,(a,b) # 0.

Proof. (i)==>(ii) Let (H,-) be a join space and (a,b) € H?, such
that 3c € H : a-b C ¢®. We have p(a)Up(b) = a?Ub =a-bC 2 =
= p(c) so a€p(a) C p(c), b€ p(b) C p(c). Hence a € p(b)U p(c) = b,
be p(a)Up(c) = a-c, whence c€ a/bNb/a. Therefore, a?Nb? # P and
for any d € a®?Nb?, we have d? = p(d) C p(a®2Nb?) = p(p(a)Np(b)) C
C p?(a) N p?(b) C p(a) N p(b) = a? N b2, so we obtain (ii).

(i))==(iii) Let (a,b) € H?, such that L,(a,b) # 0. Then there
isc € L,(a,b) = Ly(a,a)NL,(b,b) = p~'(a)Np~1(b); hence cpa and
cpb. Since a € p(c) it results p(a) C p?(c) and we have p?(c) C p(c)
so p(a) C p(c) and similarly, p(b) C p(c). Hence a-b = p(a)Up(b) C
C p(c) = c® By hypothesis, there exists d € H, such that
d? C a®>nNb.

On the other hand, a®?Nb* = p(a) N p(b) = Uy(a,a)NU,(b,b) =
= Upy(a,b). It results U,(a,b) # 0.

(iil)==(i) We have to verify the following implication:
a/bNe/d#0=>a-dNb-c#0.
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Let z € a/bNc/d. It results a € b = p(z) U p(b) and ¢ € zd =
= p(z) U p(d). We have the following possibilities:

1° z € p™Ha)Np~(c) = Ly(a,c). From (iii) it results U,(a,c) =
= p(a) N p(c) # 0. Therefore, ad Nbc = (p(a) U p(d)) N (p(b) U
Up(c)) = (p(a) N p(b)) U (p(d) N p(b)) U (p(a) N p(c)) U (p(d) N
Np(c)) # 0.

2° a € p(b). Then p(a) C p?(b) C p(b), so p(a)Np(b) # 0, whence
adNbc # 0.

3° Similarly, if ¢ € p(d), then p(c)Cp*(d)Cp(d) so p(c)Np(d)#0,
whence ad N be # 0.

In all the situations, we obtain ad N bc # 0. Therefore, (H,-) is a
join space. ]

§2. Hypergroups associated with binary
relations

I.G. Rosenberg associates a hypergroupoid Hg with every binary
relation R on a set H and with full domain, in this manner:

V(z,y) € H? zoy={2€ H| (z,2) € Ror (y,2) € R}.
He characterizes all R such that the hypergroupoid Hg = (H, o) is
a semihypergroup, hypergroup and join space.

Let R C HxH and for all (z,y) € H?, set
zoz = {y € H | (z,y) € R}, zoy = zozUyoy and Hr =< H;o > .
5. Definition. We say that x € H is an outer element of R if

Jh € H, such that (h,z) ¢ R? and an inner element of R otherwise.

First of all, we have the following:
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6. Lemma. Hp is a hypergroupoid if and only if H is the domain
of R. |

7. Theorem. Let R be a binary relation on H with full domain.
Then Hpg is a semihypergroup if and only if R C R? and the fol-
lowing implication is satisfied:

(a) (a,z) € R? = (a,z) €R
whenever x is an outer element of R.

Proof. First notice that for Hp the associative law for ”o” becomes

aoa U U uou | = U vov | U coc
u€bobUcoc vEaoalbob

which can be expressed as follows: For all (a,b,c,z) € H*

(a,z) € Ror (b,z) € R?or (c,z) € R? <>

(8) <= (a,z) € R? or (b,z) € R? or (c,z) € R.

(=) Let Hg be a semihypergroup. Assume to the contrary that
R ¢ R?. Then there exists (b,z) € R — R%. Consider (3) for
a = x and ¢ = b. Then the right-hand side of (3) is clearly sa-
tisfied on account of (c,z) = (b,z) € R. On the left-hand side
(b,z) = (c,z) ¢ R? and so (z,z) = (a,z) € R. Now (b,z) € R and
(z,z) € R yield the contradiction (b,z) € R2. Thus R C R% To
prove (a) suppose to the contrary that there exist an outer element
z of R and a € H such that (a,z) € R?— R. By the definition of an
outer element clearly (b, z) ¢ R? for some b € H. Set ¢ = b in (8).
In view of (a,z) € R? the right-hand side of (8) holds while the
left-hand side is invalid on account of (a,z) ¢ R and (b,z) ¢ R
This contradiction proves the validity of (a).

(<) Let R C R? and (a,z) € R? => (a,z) € R provided z is
an outer element of R. Let (a,b,c,z) € H* If (b,z) € R? then
both sides of (8) are satisfied. Thus let (b,z) ¢ R2. Then z outer
and (a) yield (a,z) € R?> = (a,z) € R. Notice that in view of
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R C R? we have (a,7) € R? <= (a,z) € R. By the same taken
(¢, x) € R? <= (c, z) € R; together with (b, x) ¢ R2? this proves (3).
]

The above Theorem can be reformulated for hypergroups in
the following manner:

8. Theorem. Let R be a binary relation. Then Hg is a hypergroup
if and only if

1) R has full domain;

2) R has full range;

3) RC R? and

4) (a,z) € R? = (a,z) € R

whenever x is an outer element of R.

9. Proposition. Let < H;o > be a semihypergroup. There is a
binary relation R on H, such that < H;o > is of the form Hpg if
and only if V(a,b) € H?, the following conditions are satisfied:

(1°) aob = a? U b%
(2°) a? C (a?)?, and
(3°) (a®)* N (H — (b)) C a®. ()

Proof. (=) Let Hg =< H;o > be a semihypergroup. Notice
that
(z,t) ER<>te? (2t) € R?<=tc (2?2

Now (1°) follows from the definition of Hg and (2°) is a translation
of R C R%. To prove (3°) let = belong to the left side of (y). Then
(a,z) € R? and (b,z) ¢ R? and therefore x is an outer element
of R. From (a) in Theorem 7 we obtain (a,z) € R which means
T € a’.
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(¢<=) Let < H;o > satisfy (1°)—(3°). Set
R={(a,b)|a€ H, bea?} (6)

Now (1°) means aob = aoa U bob for all a,b € H. As a? is nonvoid
for each a € H, clearly the domain of R is IDg = H. It can be
easily verified that (2°) translates into R C R2. To prove (a) let
(a,x) € R? where z is an outer element of R. Then (b,z) ¢ R? for
some b € H. From (8) we obtain z € (a?)? and z ¢ (6%)2. Now (v)
yields z € a? and (a,z) € R by (6). n

§3. Hypergroups associated with union,
intersection, direct product,
direct limit of relations

As we have seen in the previous paragraph, with any binary re-
lation R on a set H, a partial hypergroupoid Hgp =< H;o > is
associated, as follows:

V(z,2) € H?, zox={yc H|(z,y) €R}, zoz=20zUz02.

L
“ ID(R)={zx € H|3ye€ H: (z,y) € R},
R(R)={z€ H|3z€ H:(z,z) € R},

for all £>2,
sz{(al, ak+1)€H2|3(a2, e ak)EHk_ll((Ll, az)ER, . (ak, ak+1)€R}.

z is called an outer element for R if 3h € H : (h,z) ¢ R
Rosenberg found conditions on R, such that Hg is a hyper-
group or a join space (see [326]). Let us recall Theorem 8, §2:

Hp is a hypergroup if and only if:
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H =DD(R);

H - R(R);

R C R?%

if £ is an outer element for R,

then Va € H, (a,z) € R? = (a,z) € R.

b s

If Hg is a hypergroup, then it is called the Rosenberg hyper-
group.

In this paragraph, the hypergroup Hp associated by Rosenberg
with a binary relation R, is analysed especially in the case R is sym-
metric, and conditions are found on relations R; so that the hyper-
groupoid associated with the union, intersection, direct product,
direct limit of the R; is a hypergroup.

Let < Hpg; o > be the hypergroup associated to a binary rela-
tion R satisfying the conditions 1-4 of Theorem 8.

Set P={z € H|zox ¥z} and K = {e € H | ece D P}.

10. Theorem. Hpy is regular if and only if K # 0.

Proof. Let us prove the two implications:

"=>" Let e be an identity of the regular hypergroup Hg.

If P =0, clearly ece D P.

If P # 0, thenVz € P, we have eox = eoeUzoz. Since = ¢ zoz,
it follows that eoe > z, therefore ece D P, whence K # 0.

?<="If P =0, then Vz € H, zox 5 z, whence V (z,y) € H?,
we have: zoy = zox Uyoy D {z,y} so H = Iy and Vz € H,
H = i(x) (the set of inverses of z).

Now, let us suppose P # (). Then if e € H is such that eoe D P,
we have

Yx € P, eox = eoe U zox D eoe D .
Vy € H— P, eoy = ece Uyoy D yoy D y.
Therefore Iy is not empty, since Iy D K. On the other side, if

e € Iy, we have Vz € H, eoz = eoe U zoz D eoe D e, whence
e € i(z) and so Hp is regular. =
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11. Remark.

1. KNP =40.

Proof.

1. If e € KN P, then e € P implies ece Z e, but e € K implies
eoce D P 3 e, a contradiction.

2. Let e € K. Then eoe O P and for every h € P, h € eoe C hoe.
For h € H — P, clearly h € hoh C hoe. This proves e € Iy
and K C Iy. We prove the inverse inclusion. Let e € Iy, and
z € P. Then eox = eoe U zozx > z. Since zoxr F x we obtain
Z € eoe hence e € K. (]

For an equivalence relation § on H denote by H/6 the set of
blocks (or equivalence classes) of 6.

12. Theorem. If Hy is a hypergroup then
(i) R? is transitive,

(i) if, moreover, R is symmetric, then R? is an equivalence rela-
tion on H,

(iii) if R is symmetric and |H/R?| > 1 then R is an equivalence
relation on H.

Proof. (i) Suppose to the contrary that there exist (z,y) € R? >
5(y, 2) such that (z, z)@R%. Then z is outer and so (y, z) € R. Since
(z,y) € R?, there exists a € H such that (z,a) € R3(a,y). Now
(a,2) € R? shows (a,2) € R. Thus (z,z) € R?, a contradiction.

(ii) Let R be symmetric. Let z € H. We have (z,y) € R for
some y € H (since the domain of R is H, according to 1, Theorem
8) and by symmetry (z,y) € R 3 (y, z) whence (z,z) € R?, proving
the reflexivity of R?. It is clear that R? is symmetric and so by (i)
the relation R? is an equivalence relation on H.
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(iii) Let R be symmetric and |H/R?| > 1. Then each h € H
is outer and so R C R C R? by 3 and 4 of Theorem 8, proving
R = R2 n

13. Theorem. If K # () and R is symmetric, then Hp is a reqular
reversible hypergroup.

Proof. By Theorem 10, we know that Hpg is regular, so only the
reversibility has to be proved. For any a € H, set U, = aoa.

Let a € boc. Since boc = U, UU, we can suppose a € U, whence
(b,a) € R. Hence (a,b) € R, and so b € U,. It follows that for all
x € H, we have b € U, UU, = aox; thus if ¢’ is any inverse of c,
then b € aoc’. So Hpy is reversible on one side.

Let us remember now that Ve € Iy, e is an inverse of every
element of H.

I. If ¢ ¢ coc, then ¢ € eoe, whence ¢ € eoe U U, = eoa and
e € i(b).
II. If ¢ € coc let us distinguish two cases:

1. |H/R?|>1. In this case, Vz € H, we have i(z) = Iy = H
hence ¢ € i(b), so ¢ € coa, where ¢ € i(b). Therefore, if
|H/R?| > 1, H is reversible.

2. Let us suppose now |H/R?|=1, whence R?>=H?. Let e be
an identity, since eR%c, there is d € H such that (e, d) €
R>(d,c). It follows ¢ € dod and d € eoe from which
e €dod and c € dod. Therefore we have dob = U; U U, =
dodUU,. Since dod>e, it follows dob>e, so d€i(b), but we
have also dod 3 ¢, then doa = dod U aca > ¢. Therefore,
we can conclude that Hpy is reversible on both sides. =

Operations on R(H) and the corresponding Hp

Let R,S be binary relations on H, satisfying the conditions 1-3
of Theorem 8. Then also RU S satisfies 1-3, but generally, as the
following examples show, Hgyus is not a hypergroup even if both
H R and H S are.
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I Let H={1,2,3,4}, Iy = {(z,z) | z € H}. R = IxU{(1,2)},
S = IgU{(2,3)}. Clearly, Hi and Hg are hypergroups and
we have: R2=R, S?=G.

(RUS)? = R2US2URSUSR = RUSU{(1,3)} 2 RUS.

Hence (4,3)¢(RU S)?, so 3 is outer for RU S, but
(1,3)€(RUS)2—RU S. Therefore, 1, 2, 3 of Theorem 8 are
satisfied, but 4 is not, so Hgys is not a hypergroup.

II. If we suppose RSUSR C R2US? and R* = R, 5% = S, then
4 is satisfied by RU S and therefore Hps is a hypergroup.

14. Remark. The condition RSUSR C R?2US? (that is (RUS)? =
= R%?U S?) is not necessary for Hps to be a hypergroup as we see
in III:

IIL Set H = {1,2,3}. R= Iz U{(1,2)}, § = Iy U {(2,3)}.
We have R? = R, §? = S and (RU S)? = R2U S2 U {(1,3)}
so (RUS)? # R2U S? but RU S satisfies the condition 4.

15. Remark. Neither of R2=R, S?=3, nor both Hg, Hg be hy-
pergroups is necessary for Hgr s to be a hypergroup as one sees in

Iv:

IV. Set H = {1,2,3}.

R:{(la 2)a (21 1)’ (27 2)7 (3a 3)}’ S:{(z’ 3)’ (3’ 2)’ (17 1)7 (3: 3)}:
0 B2 = InU{(1,2), 2, D} 2 R, 5% = InU{(2,3), (3,2} 3 §

and (RUS)2=H x H 2 R? U S? whence all the conditions
1-4 are satisfied by RU S.
Let us remark also that Hg, Hg do not satisfy 4. Indeed:

(3,1) ¢ R? implies that 1 is outer, but (1,1) ¢ R? —
(1,2) ¢ S? implies that 2 is outer, but (2,2) ¢ S? —

16. Theorem. Let R and S be reflexive and transitive relations
on H (that is, quasi—orders). Then Hpns is a hypergroup.
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Proof. Indeed, RN S is quasi-order and so it satisfies 1-4 of
Theorem 8. ]

17. Corollary. If Hr and Hg are hypergroups, R and S are
symmetric, and |H/R? > 1 < |H/S?|, then Hgns is a hypergroup.
Proof. It follows directly from Theorem 12 (iii) and Theorem 16.m
18. Theorem. Let R, S be relations on H such that

() D(R) = R(R) = H=1ID(S) = R(S)

(8) R*=R, S>=S, RS=SR.
Then Hgg tis a hypergroup.

Proof. Indeed, we have (RS) (RS) = R(RS)S = R2S? = RS,
whence the conditions 3, 4 of Theorem 8 are satisfied. Moreover,
1, 2 of Theorem 8 follow from (c). [

19. Corollary. If R and S are equivalence relations on H such
that RS = SR, then Hgg is a hypergroup.

Proof. It follows from Theorem 18.

20. Theorem. Let H;, Hy be non empty sets. Le R; be a binary re-
lation on H; (1 = 1,2) and (H;)r, = < Hy; 0; > be the hypergroupoid
assoctated with R;. Let H = Hyx Hy and let H be endowed with the
hyperoperation (x1,2)0(y1,y2) = (101 Y1, 2202 y2) and let Ry X R,
be the binary relation on H defined as follows:

((a1, 1), (az,z2)) € RiX Ry if and only if (a1,az) € Ry, (z1,%2) € Ry.
Then
a) Hp,xr, = (Hi1)p, X (Hz2)p,-

b) Hg, xr, is a hypergroup if and only if for j € {1,2}
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(i) (Hj)g; is a hypergroup, and
(11) R? 75 HJ2 —— Rg_j = Rg_j.

Proof. (a) Direct verification.

(b) (=>) Let Hg, xr, be a hypergroup. We prove (i) for j = 1.
By 1 and 2 we get ID(R; xR;) = H = IR(R;xRy) proving 1 and 2
for R;. Next, by 3

R1XR2 g (R1XR2)2 = R%XR%

and so R; satisfies 3. To prove 4 let z; be an outer element of R; and
(a1,21) € R2. Since ID(Ry) = Hy, there exists (ag, 23) € R2. Clearly,
(21, 22) is outer for Ry x Ry and from ((as, az), (21, 22)) € RZx R and
4 we obtain ((a1,a2), (21, 22)) € R1XRs and (a1,21) € R;. Thus R;
satisfies 4 and (H;)pg, is a hypergroup. The same proof shows that
(H2)R, is a hypergroup.

To prove (ii) let j = 1 and R? # HZ. Choose (2,;) € H? — R2.

To prove R% C Ry let (y1,92) € R3. As R(R;) = H; = D(R,),
we have (a,z:) € R; for some a and (b,a) € R; for some b. Then
(b,z1) € R? and (y1,y2) € R% show ((b,11), (x1,72)) € RZxR2 =
= (R1XRy)?. Here (z1,y2) is outer for R;x Ry due to (z,7;) ¢ R2.
By 4 clearly ((b,y1), (z1,¥2)) € RiXRy and (y1,y2) € R, proving
R} C R,. We showed above that R, C RZ. Together R = R,. The
same proof works for j = 2.

(<=) Let (i) and (ii) hold. It is easy to see that Hg, x g, satisfies
the conditions 1-3. To prove 4 let z = (21, 22) be an outer element
of Ry x Ry. Then for some j € {1,2} the element z; is an outer ele-
ment of R;. Then R} # H? and from (ii) we see that Rs_; = R}_,.
Let a = (al,ag) satlsfy (a z) € RIxR3. Since (H;)p, satisfies 4
we obtain (aj,z;) € R;. Moreover, since we have R3_; = RZ_J, it
results (a, z) € Ry X Ry. [

Now, let us recall some definitions. We call model a pair
< H;R >, that is a set H endowed with a binary relation R.
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If < H'; R’ > is another model, we say that a function f : H — H’
is a homomorphism of models, and we write f € Hom(H, H'), if the
following implication is satisfied: (z,y) € R = (f(z), f(y)) €R'.

We say that a family of models {< H;, R; >}ier is direct if it
satisfies the following conditions:

(i) < I;<) is a direct partially ordered set.
(i) V(i) € I2, i #j <= H; N H; = 0.

(iii) for any (i,j) € I?, if i < j, a homomorphism of models
@} : Hi — Hj is defined, such that if i < j < k, we have
Pieh = ¢k and Vi € I, ¢} = 1d (H).

Set H = UHi and let us define in H the following binary

el
relation:

V(x,-,yj)eHixHj, iL‘,;Nyj<:>3k€I, k>i, k>3,
such that ¢} (z:) =1 (y;)-
The relation ~ is an equivalence relation on H.
We shall denote <p§. (z;) by ;. The direct limit H = l_iLn (H;)ier
is the quotient H/ ~ endowed with the binary relation R

(Z,2) e R<=3qe€l, 3z, € TN H,, 32, € 2N H,
such that (z4, z,) € R,.

21. Theorem. Let K = {< H;,R; >}icr be a direct family of
models. IfVi € I, there isk € I, k > i, such that (Hy)g, is a
hypergroup, then (Hg) is a hypergroup.

Proof. To prove 1 of Theorem 8 for R, let £ € H be arbitrary.
Choose x € T Then z € H; for some ¢ € I. There exists kK > 3
such that (Hi)g, is a hypergroup. Clearly zx = ¢%(z) € TN Hy
(due to @i(z) = zx = i(zx)). From ID(Ry) = Hj, we obtain that
(%k,y) € Ry, for some y € Hy. Clearly (z,7) € R proving 1 for R.
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The proof of 2 is similar.

To prove 3 let (Z, ) € R. Then there exist i € I and (z;, %) €
€ (zxy)NR;. By assumption (Hy)g, is a hypergroup for some k > i.
Set zx = pL(z;) and yx = i(y;). Notice that = € Z, yx, € § and
(zx,yx) € Ry because ¢} is a homomorphism of models. Applying
3 to Ry, we obtain (zk, yx) € RZ and so (zx, u), (v, yx) € Ry, for some
u € Hy. Finally, (Z,4), (4,7) € R proving R C I

To prove 4 let Z be an outer element of R. Then (a,z) ¢ R
for some @ € H. Let b € H satisfy (b,2) € R?, whence (b,1) €
R > (@,%) for some & € H. Then, from (i) and (iii), we obtain
(b,u) € Ry 3 (u,2) for some ¢ € I, b € bN H,, 2 € 2N H, and
u € uNH,. Choose a € a. Then a € H, for some r € I. There exists
¢ € I such that i+ > g, ¢ > . By the hypothesis H' = (Hy)g, is a
hypergroup for some k € I, k > 4. Set o’ = ¢}(a) and 2’ = ¢}(z).
We show that 2’ is an outer element of R;. Indeed, a’ € a N Hy
and 2’ € zN Hy, satisfy (d/, 2') ¢ R2 since otherwise we would have
(a,2) e R

Set b’ = ¢f(b) and ' = ¢}(u). Then (V,u') € Ry > (v/,2)
because ¢} is a homomorphism. Thus, (¥, 2') € R2. Now the hyper-
group H' satisfies 4 and so (V,2') € Ry. This implies (b,2) € R
proving 4 for H.

Hypergraphs, relations and Hp

Denote by H(H) the set of hypergraphs on H, that is of families
K = {AX}ic1,, where I is nonempty, Vi € Ix, AKX € P*(H) and
UAKZH
ielk

Denote by SR(H) the set of reflexive and symmetric binary re-
lations on H. For any K € H(H), define the relation R = ¥(K)
as follows:

V(z,y) € H?, zRky if and only if i € I : {z,y} C Af{.

Clearly, Rx € SR(H) and V¥ is a function ¥ : H(H) — SR(H).
U is surjective but not injective. Set ¥~1(¥(K)) = Q.
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Let now < be the partial order on Qg defined on
H(H) : K1 < Ky if and only if Vi € Ig,, 3j € Ik, such that
Al C A

Let O : SR(H) — P*(H(H)) be the function defined by setting
VR € SR(H), O(R) = {K € H(H) | ¥(K) = R}. Clearly,
O(Rk) = Qk. For H infinite we assume the axiom of choice.

22. Theorem. Let Re H(H). Then O(Rg) is an interval of the
order <, that is O(R) has a least element u(R)={{z,y} | (z,y) € R}
and a greatest element M (R) which is the set of inclusion mazimal
subsets B of H such that BxB C R.

Proof.
(1) V(z,y) € H? if xRy, then there exists j such that
{z,y} c AK; therefore VK € O(R), u(R) < K.
(2) Let K € O(R). Vi € Ix we have clearly AXxAX C R and
there exists B € P*(H) such that AX ¢ B, BxB C R and
BxB C PxP C R implies P = B. So K < M(R). n

23. Definition. Let gp¥,, and pV s be the restrictions of ¥ to the
least and greatest hypergraphs of O(R), respectively. Let V¥,, and
Wy be respectively the functions

U, {u(R) | R € SR(H)} — SR(H)
Uy :{M(R)| Re SR(H)} — SR(H)
defined VR € SR(H),

\Ilm(u'(R)) = R\pm(u’(R))a
Up(M(R)) = pUMm(M(R)).

24. Proposition. We have ¥V, = Ispy = Yy M, whence p, M
are injective, V,,,, Vs surjective.

Proof. It is enough to remark that if R = Rx = V(K), we have
w(R) € "YU (K))>M(R), whence ¥,,u(Rg) € ¥(TH¥(K))) >
SV M(Rk) from which U,,u(Rk) = Yy M(Rk) = ¥(K) = Rg.m
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Other topics

Let R be a binary relation on H. Let H(k) =< H;o, > be the
succession of hypergroupoids defined recursively as follows:

V(z,y)€H?, zo1y=xoy,
Vk>1,Vze€H, zop1z= U Yoy,

YETORT

V(z,y) € H?, T0p41y =z opr1 T Uy ok y.
We have clearly z € z oy z if and only if zR*z.
Let us denote Cy(R) the transitive closure of the relation R.

25. Theorem. Let R be a reflexive relation on H. Then the
extension < H;5 > of Hg defined by setting

Ve e H, zoz=|Jzoxz
k>1
V(z,y) € H?, 25y = 15z Uydy

is a hypergroup.

Proof. It is enough to remark that < H;56 >= Hy where
R = Cy(R) = |JR* satisfies B = R whence the conditions 14

k>1
of Theorem 8. ]

26. Corollary. Let R be a reflezive relation on H and let |H| = n.
Then the hypergroupoid < H;o,_; > is a hypergroup.

Proof. The hypothesis implies that R"~! = C;(R). n

27. Theorem. Let R be a relation on H and K a subhypergroup
of Hr. If K # H then K 1is not closed.

Proof. Indeed, if (a,b,z) € H® is such that a € K, b € U,,
z € H— K, we have b € aoz = agoa U zox. So {b,a} C K but
z ¢ K whence K is not closed. n
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28. Theorem. Let R be a symmetric relation on H and Hg a
hypergroup.

1. If |H/R? =1, then Hg has not proper subsemihypergroups.

2. If |[H/R?| > 1, then every subsemihypergroup of Hg is a
subhypergroup of Hp.

Proof. It is enough to remark that V (a,b) € H?, aR?b if and only
if 3z € H such that (a,z) € R, (z,b) € R whence b € a*. It follows
that Va € H, R?(a) C< a >, where < a > is the subsemihyper-
group generated by a. ]

29. Theorem. Let Hg be a hypergroup and suppose R to be sym-
metric. Then R is regular. If |[H/R?| > 1, then R is an equivalence
relation whence Hg/R is a hypergroup.

Proof. Let zRy and z € H. We have: zoz = U,UU,, yoz = U,UU,.
Set q € xoz.

1. Let R* = R. Then if q € zoz, we have ¢ R (z02); if q € zoz,

we have ¢ R (yoy) whence we obtain zoz R yoz.

2. Let R? = H?. For any \ € zoxz, since (\y) € R?, there is
p such that (A p) € R, (u,y) € R whence (y,u) € R, so
p € yoy. Therefore, zox R yoy for every (x,y) € H2. Then R
is regular on both sides.

The second statement follows from Theorem 12 and from [437,
Theorem 29]. u

In this paragraph, the analysis of Rosenberg hypergroup, asso-
ciated with union, intersection, product of relations is continued
in depth, obtaining several results among which also the mutual
associativity plays a part.
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30. Proposition. Let R be a relation on H. If Hg is a hypergroup,
then Vn € IN*, Hpn is a hypergroup.

Proof. It is immediate that ID(R) = R(R) = H and R C R?
imply D(R") = IR(R") = H. Moreover, for every 1 < s < t, we
have R® C R!, in particular R® C R?", for every n € IN*. It remains
to prove 4) in Theorem 8. Let z be an outer element for R", that is
there exists h € H : (h,z) ¢ R*, whence (h,z) ¢ R?, that is also
z is an outer element for R.

Suppose (a,z) € R*. Then Ju; € H : (a,u;) € R™ 2 and
(u1,7) € R2. Since z is an outer element for R, clearly (u;,z) € R,
so (a,z) € R*™ ! Continuing in the same manner, we obtain
(a,z) € RC R". n

Let us denote by C;(R) the transitive closure of a relation R.

31. Theorem. Let R and S be two relations on H, such that
R C S C 8% c Cy(R). If Hg is a hypergroup, then also Hg is a
hypergroup.

Proof. Since Hg is a hypergroup, we have ID(R) = IR(R) = H,
whence ID(S) = IR(S) = H. Now, let us consider an outer element
x for S, that is 3h € H : (h,z) ¢ S Hence, z is an outer element
also for R.

We show (a,z) € Ci(R) => (a,z) € R. Indeed, let (a,z) €
€ Cy(R). Denote by ¢ the least integer such that (a,z) € R?. Then
there exist a = wug,u1,...,uy = x such that (u;,u;41)€R for all
i€{0,1,...,£ — 1}. If £ > 2, then (uy—2,z) € R? and z outer for
R would yield (u¢—2,z) € R in contradiction to the minimality of
¢. Thus £ =1 and (a,z) € R.

Consider (b, z) € S?. Then (b,z) € C;(R) andso (b,z) € RC S
proving 4) for S. [

32. Corollary. Let R be a relation on H, such that Cy(R) = HxH
and Hp is a hypergroup. Then for each relation S on H, such that
R C S C 8% Hg is also a hypergroup.



114 PIERGIULIO CORSINI and VIOLETA LEOREANU

33. Corollary. Let R and S be relations on H, such that Hg is a
hypergroup and let k > 1, and s > 1. Then

1. if S C 8% C Cy(R), then also Hg. gk is a hypergroup;

2. if T C Cy(R) is reflexive then also Hgsur 1s a hypergroup.

Proof. 1. Since Hp is a hypergroup, R C R?. Hence the assump-
tions imply '

RcC R*USF c (R°US*? C Gi(R).

Apply the theorem.
22.Inl)set S=Tand k= 1. [

34. Corollary. Let R and S be relations on H, such that Hrng is a
hypergroup and R C R? C Cy(RNS). Then also Hpg is a hypergroup.

Proof. Apply the previous theorem to R = RNSand S =R. =

35. Corollary. Let R and S be two relations on H, such that
R C S C S*cC CyR). If Hg is a hypergroup then for all positive
ki and kg, also Hgk, gr, and Hgk, g, are hypergroups.

Proof. From R C R?,

RC Rk1+k2 C RF1 k2 C RFi1t+ka+k Skz C Rk Sszh Ske —
_ (RMSkY2 C Cy(R).

Theorem 31 applied to R and S’ = R¥ 5% yields that Hps, gx, is a
hypergroup. The proof that Hgk, gk, is a hypergroup is similar. m

36. Corollary. Let R and S be two reflexive relations on H, such
that S C Cy(R). If Hrus is a hypergroup, then for all positive ki
and kz, also Hpk, gk, and Hgk, gk, are hypergroups.
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Proof. Set R' = RU S and S’ = R**S*2. Since both R and S are
reflexive, R’ € S’ € 82 C Cy(R). Then apply Theorem 31 to R’
and S’ to obtain that Hpgk, g, is a hypergroup.

By symmetry, also Hgk, gr, is a hypergroup. |

Now let us mention some results about mutually asociative Hg
hypergroups.

First, recall the definition of mutually associative partial hy-
pergroupoids:

37. Definition. We say that two partial hypergroupoids < H, o; >
and < H, oy > are mutually associative (m.a.) if V(z,y,2) € H®
we have

(*)  (zory)ozz==z01(yo22), (Tozy)o1z =170z (yo12)
For a relation R on H and X C H set

R(X)={y| (z,y) € R for some z € X}.
If X = {x1,...,z,} we write R(xy, ..., Z,) for R(X).

38. Proposition. Let R and S be relations on H with full do-
main. Then Hp =< H; og > and Hg =< H; og > are mutually
associative if and only if for all (z,y,2) € H®

(*x) RS(z,y) U S(2) = R(z) U SR(y, 2).

Proof. We have: if (c € ID(S) = aogb # 0), then (aogb)ogc =
= {t € H| (a,t) € RS or (b,t) € RS or (c,t) € S}; if (a € D(S)
= bogc # 0), then aog(bogc) = {t € H | (bt) € SR or
(c,t) € SR or (a,t) € R}. Hence (x*) is the first equality of (*)
for Hp and Hg. Since both Hp and Hg are commutative, the se-
cond equality of (%) coincides with the first one. : [

39. Proposition. Let R and S be two relations on H such that
Hp and Hg are mutually associative hypergroups. Then also Hg g
is a hypergroup.
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Proof. ID(RUS) = H = R(RUS) because Hp, is a hypergroup and
so D(R) = H = IR(R). Next R C R? and S C S? and therefore
RUS Cc R?U 8% c (RUS)? To prove 4) in Theorem 8 let = be an
outer element for RUS. Then (h,z) ¢ (RUS)? = R2URSUSRUS?
for some h; in particular (h,z) ¢ R? and z is outer for R.

Similarly, z is outer for S. Now consider (a,z) € (RUS)% If
(a,z) € R? then (a,z) € R because Hy is a hypergroup and z is
outer for R. By symmetry the same holds for (a,z) € S?. Again
by symmetry it suffices to consider (a,z) € RS. Setting x = a and
y = z = h we obtain

RS(a,h) U S(h) = R(a) U SR(h).

Here z € RS(a) but z ¢ SR(h) due to (z,h) ¢ (RUS)%. Thus
x € R(a) proving the required (a,z) € R. ]

40. Proposition. Let R and S be relations on H, such that
R C RS and SRN{(z,z) |z € H} = 0. If Hg is a hypergroup and
Hpg, Hg are mutually associative, then also Hgs is a hypergroup.

Proof. Since RCRS and Hpg is a hypergroup, it results
ID(RS) =R(RS) = H.

Moreover, from R C RS, it results RS C (RS)2.

Now, let us consider x an outer element for RS, so z is also
an outer element for R. If (a,z) € (RS)?, then 3b € H, such that
(a,b) € RS > (b,z). Then b € (aorb)ogb = aog (bogb) and since
(b,b) ¢ SR, it results (a,b) € R.

Similarly, we have z € (bogz)osz = bog(zogz) and since
(z,z) ¢ SR, it results (b,z) € R.

Therefore (a,z) € R? and since z is an outer element for R, it
results (a,z) € RC Ro S.

Then Hpgg is a hypergroup. ]

41. Proposition. Let R and S be relations on H, such that
R C RS and D(SR) # H. If Hg is a hypergroup and Hg, Hs are
mutually associative, then Hgrs is a hypergroup.
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Proof. As in the proof of the above proposition, we have
ID(RS) = R(RS) = H and RS C (RS)%.

Let  be an outer element for RS. If (a,z) € (RS)?, then 3b € H,
such that (a,b) € RS 3 (b,z). Let h € H — D(SR). We have
b € (aogh)osh = aog(hogh) and since (h,b) ¢ SR, it results
(a,b) € R.

Similarly, z € (boy h) og h = bo; (hos h) and since (h,z)¢SR
it results (b, z)€R. Then (a,z)€R?, so (a,z)€ER C RS. Then Hgg
is a hypergroup. [

84. Relation 3 in semihypergroups

Recall that with each binary relation R on a set H, a partial hy-
pergroupoid Hr = < H;o > is associated as follows:

V(z,z) € H?, zogrx = {y € H| (z,y) € R}, xorz = zogaUzog 2.

z is an outer element for R if 3h € H : (h,z) ¢ R%.
Recall Theorem 8 of this chapter:

Hpg, is a hypergroup if and only if:
H =ID(R);
H =D(R),
R C R%;

if x is an outer element for R, then Va € H,
(a,z) € R? = (a,z) € R.

L

For a relation T on H set Hr = < H;or > and for two relations R
and S on H, let RS = {(z,y) | (z,u) € R, (u,y) € S for some u}.

42. Proposition. Let R and S be two relations on H. Then for
alla,b,c € H, we have:
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(i) (aora)ogr(aora)= |J tort;

t€aopa
(ii) aogaoga =aogaU (aoga)og(acga);
(iii) of R C R?, then (a,z) € R? <= x € aogaoga;

(iv) ifacsa # 0= aoga #0, then
(aoga)ogsa =aosaUaogsa;
(v) (aogra)og(aogra) =aogsa;
(vi) aogusa =aoraUaoga; aognsa=aograNaoga,

QORUSAORnsa@ =aorgaorpalUaogaogalUaorsalUaogga;

(vil) if c € ID(S) => aogrb# 0, then (aorb)osc=
={t€ H|(a,t) € RS or (b,t) € RS or (c,t) € S};
ifa € ID(S) => bogc # 0, then aog(bosc) =
={te H| (bt) € SR or(c,t) € SR or (a,t) € R}.

Proof. A straightforward verification. n

43. Corollary. If R C R?, then z is an outer element for R if and
only if Ja € H, such that z ¢ aogaocga.

44. Remark. If R C R? then there are no outer elements for R if
and only if Va € H, we have aograogra = H.

45. Proposition. The following two conditions are equivalent for
a relation R on H, such that R C R?:

(i) VY(a,c) € H?, we have (R? — R)(a) C R*(c);

(ii) #f = is an outer element for R, then
(a,z) € R? => (a,7) € R.

46. Remarks.

1. If Ris a relation on H, such that R C R2?, then R is transitive
if and only if for all @ € H, we have aogpaora = aoga.
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2. If R is a relation on H, then R C R? if and only if for all
a € H, we have aogaora = (aoga)og(aoga).

3. If R is a symmetric nontransitive relation on H, such that
R C R?, then Hpg is a hypergroup if and only if Yz € H, we
have zogxogx = H.

Proof. ”==" It results by (iii) of Theorem 12 and (iii) of Propo-
sition 42.

7 <=" The conditions of Theorem 8 are verified. n
Now, let (H, o) be a semihypergroup. Set
P(H) = {Ha,- |neIN*; Vie {1,2,...,n}, a; € H} .
i=1

We have:

Ve € Hyzopx ={y € H|zfy} =
:{yEHlHPOEP(H){x,y}CPO}: U PO'
PoeP(H);zePp
Denote
U Py = Cy(z) and
P()GP(H);$€P0

Vn € 1N*7 U{PO € P(H) | Poncn(ﬂU) 7é 0} = Cn+1(x)

47. Theorem. Let H be a semihypergroup. Then the relation 3 s
transitive if and only if C(x) = Cy(z), for all x € H, where by C(x)
we have denoted the complete closure of x.

Proof. By Remark 46, 1, it results that 3 is transitive if and only
if

Vz € H, zogxogT =x08%.
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We have:

Togrogr = U aogalUzxogx =
acrogT

={t€ H|t€Ci(a),a € Ci(z)} UCi(z) =
={teH|te | P, a€C@)}UC(z)=
PocP(H);a€Pp

Therefore, 3 is transitive if and only if Vo € H, C3(z)UC(z) = C;1(z),
that is Vr € H, Ca(z) C Ci(z). Then Vn € IN*, Cpy1(z) C Cp(z).
Indeed, if we suppose Ci(z) C Cr_1(z), where k € IN*, then
Cera(z) = U{Py € P(H) | B NCi(z) # 0} C U{R € P(H) |
Py N Ci_1(z) # 0} = Cx(z). Since C(z) = |J Ci(z), it results that
ieN”
B is transitive if and only if Vz € H, C(x) s Ci(z).

48. Proposition. Let H = (H,-) be a semihypergroup such that
the relation B is not transitive. Then Hg is a hypergroup if and
only if 3 = H x H.

Proof. It results by Theorem 8.

49. Remarks. Let (H,-) be a hypergroup.

1. If (z,y) € H? such that z € -y (or (z € y - 7) then
z -y C xogy (respectively, y - x C z ogy).

2.VzeHifzxexz z,thenx-z Czogx.



Chapter 4

Lattices

Introduced by Ch.S. Pierce and E. Schréder and inde-
pendently by R. Dedekind, and afterwards developed by G.
Birkhoff, V. Glivenko, K. Menger, J. von Neumann, O. Ore
and others, Lattice Theory is a highly topical field, with
many applications in mathematics.

Distributive lattices represent the starting point in
Lattice Theory; their study is required by more and more
frequent situations when distributivity is imposed by appli-
cations.

A weaker condition of distributivity is the modularity,
introduced by R. Dedekind.

Modularity and distributivity are characterized in this
chaper, using hyperstructures, particularly join spaces.

§1. Distributive lattices and join spaces

The following hyperoperation was associated with an arbitrary
lattice (L, V, A), by J.C. Varlet:

V(a,b) € L?, aob={z € L|anb<z<aVb}

The study of this hyperoperation will be continued in §2.
The importance of the hyperstructure (L, o) consists in the fact
that it is frequently used in machine learning applications.

121
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The following proposition can be easily verified:

1. Proposition. The following properties hold:
1. V(a,b) € L?, {a,b} C aob;
2. V(a,b) € L?, aob = boa;

3. V(a,b) € L?, a/b+# 0 since
acafb={zeL|zAb<a<zVb}

4 Va€lL, ala=1L;
5. V(a,b) € L?, a/b> b if and only if a = b;

6. if a has the unique complement b, then

a/b={a} and b/a = {b};
7.z €a/bNb/a if and only ifaNz =bAz andaVz =bVz.
J.C. Varlet [397] obtained the following result:

2. Theorem. For a lattice L, the following are equivalent:
(1) L is distributive;
(2) (L,o0) is a join space.

Proof. (1)==(2). First of all, we shall verify the associativity of
the hyperoperation ”o”. Let a, b, ¢ be arbitrary in L. The least and
greatest elements of ao(boc) are a AbA ¢ and aV bV c respectively,
hence ao(boc) C [aAbAc,aVbVd].

Let us consider an arbitrary element z of [a AbAc,aVbV].
Hy=(xA®Vec)V(Ac),thenbAc<y<bVe, that is y € boc.
Moreover, a Ay < ¢ < aV y. Indeed, using distributivity, we have:

aAN((zA(BVe))V(Ac))=(anzA(bVc)V(aAbAc)<z
and

aV((zA(bVe))V(bAC)) = (aV(bAc)VE)A(aV(bAC)V(bVC)) > =.
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Hence
z € ao(boc) and ao(boc) =[a AbAc,aVbV .

Similarly, we have (aob)oc =[a AbAc,aV bV c], whence it follows
the associativity.

Now, let us assume that a/bNc/d # 0, that is there exists
x € L such that a € boz and ¢ € doz. We have to prove that there
exists y € L such that y € aod N boc; which is equivalent to

(and)V(dbAe)<y<(aVd)A(bVc).
FrombAz<a<bVzanddAzxz<c<dVz, we deduce
aANd LS (bVz)Ad=(bAd)V(zAd) < (bAd)Vc<bVe.

Since aAd < bVcand bAc < bVc, we have (aAd)V(bAc) < bVe.
Similarly, (b Ac) V (aAd) < aVd, therefore (aAd) V (bAc) <
<(aVd)A(bVc), so aodNboc # 0.

(2)==(1). First, let us notice that a/b Nb/d # O implies
aod N bob # P and since bob = {b}, it follows b € aod.

Therefore a/bNb/a # O implies b € aca = {a}, whence a = b.

Let us suppose L is not distributive. Then L contains a five—
element sublattice {a,b,c,d,e}, withaVec=bVec=¢, aAc=
= bAc = d and either a > b or a, b, c mutually non—comparable. In
both cases, a/b contains a and c, but not d.

We have ¢ € a/bNb/a and yet a # b, contradiction.

Therefore, L is a distributive lattice. ]

§2. Lattice ordered join space

Ordered hypergroupoids and hypergroups have been studied by M.
Konstantinidou and S. Serafimidis. In the following, an important
example of lattice-ordered join space is considered, which is that one
presented in §1. This topic has been explored by Ath. Kehagias
and M. Konstantinidou and we present here some of their results.
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Let (L, V, A) be a distributive lattice. Denote by ”<” the asso-
ciated order.

3. Notation. The class of intervals of elements of L is denoted by
I(L), that is:

I(L) = {[a,8] | (a,b) € L?, a < b}.

We consider on the distributive lattice (L, V,A) the following
hyperoperation

V(a,b) € L?, acb={z € L|aAb<z<aVb}=[aAbaV.

4. Proposition. We have:

I(L) = {aob | (acd) € L?}.

Proof. If [a,b] € I(L), then, by definition, we have a < b so
aob = [a A b,a Vb = [a,b]. On the other hand, any aob is an
interval, by definition. n

The following properties of intervals [a,b] (where (a,b) € L?,
a < b), are useful to prove again that if (L, <) is a distributive
lattice, then (L, o) is a hypergroup.

5. Proposition. Let (a,b,z,y) € L*, such that z <y and a < b.
We have:

(i) aolz,y] =[aAz,aVyl;
(i) [a,blo[z,y] =[aAz,bVyl

Proof. i) We have ao[z,y] = |J aoz. If u € ao[z,y], then there
<2<y
is 2, € [z,y], such that aN z, Su < aV z,.
Since ¢ < 2z, and 2z, < y it follows a Az < a A 2, and
aVz,<aVy.
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Therefore, a Az <u < aVy, whence u € [a Az,aV y]. Hence
aolz,y] C [aAz,aVyl.

On the other hand, if v € [aAz,aVy] and we set 2z, = (vVz)Ay,
then, by distributivity, we also have 2, = (v Ay) V z. Then z <
<(WAy)Vz =2z =(vVz)Ay <y, thatis 2, € [r,y]. We also
have

zwAa=[vVz)AylAha=(vVz)A(yAa) = (vAyAa)V(zAyAa).

FromvAyAa<vand zAyAa=zxzAa<w, it follows 2z, Aa < v.
Similarly, we can verify that v C z,Va. So, z,Aa <v < 2z, Va,
whence v € aoz,. Hence, 2, € [z,y] and v € aoz,, which implies
that v € ao[z,y]. Thus, [z Aa,y V a] C aolz,y]. We can conclude
that [z A a,y V a] = ao[z, y].

ii) First of all, we shall verify that [a,b]o[z,y] C [a A z,bV y].

If u € [a,blo[z,y] = |J zolz,y) = |J [2Ax,2Vy], then there
a<z<b a<z<b

is z; € [a,b], such that z; Az < u < 2 Vy. On the other hand,
aNz < z3 Az and 2 Vy < bVy, whence aAz < H1Az < u < 2n1Vy <
<bVy,soué€ [aAz,bVy]. Therefore [a,blo[z,y] C[aAz,bVy|
Conversely, let v € [aAz,bVy], thatisaAz < v < bVy. Set
zn=@Vr)Ay=(vAy)Vzand 2= (vVa)Ab=(vAb)Va. It
easily results that 2; € [z,y] and 2, € [a,b]. We have

2Ahzn=[vVI)AYA[(vVa)Abl=V(aAZ)|AbAY] =
=[wADAY))VeAz] <w.

Similarly, we verify that v < 2; V 23, so v € 21022 C [z, y]o[a, ).

Therefore, [a,blo(z,y] = [a Az,bV y]. n

6. Proposition. For any (a,b,c) € L3, the following properties
hold:

(l) (aob)oc = aO(boc);
(ii) aoL = L.
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Moreover, Bu € L such that Vz € L, we have |uoz| = 1.

Proof. i) (aob)oc = [aAb, aVbJoc = [aAbAc, aVbV ], by the previous
proposition. Similarly, ao(boc) = ao[bAc,bVc] = [aAbAc,aVbV].
ii) For any a € L, we have aoL = |Jaoz 2 |Jz = L. On

z€L ze€l
the other hand, we have aoL C L, so aoL = L. Finally, notice that

for any a € L and z € L,  # a, we have {a,z} C aoz, therefore
|aoz| > 2. ]

7. Corollary. (L, o) is a hypergroup.

8. Proposition. For any (a,b) € L?, we have that (aob,0) is a
subhypergroup of L.

Proof. Let (a,b) € L2. We shall verify that for any z and y in
(a,b), we have:

1) zoy C acb and 2) zo(aob) = acb.

1) We have anb < zAy < zVy < aVb, that means zoy C aob.

2) We have z o (aob) = [t AaAb,zVaVb] = |aAb,aV], since
anNb<z<aVb.

Therefore, z o (aob) = aob. ]

9. Proposition. Let (a,b,c) € L3. We have:

(i) ao(bV c) = (aob) V (aoc);
(ii) ao(b A c) = (aob) A (aoc).

Proof. i) Let u € ao(bVc) andset z = (aVb)Au,y=(aVc)Au.
From ao(bVe)=[aA(bVe),aVbV it followsu <aVbVec We
alsohavezVy=[(aVb) AulV|@aVec)Aul=(aVbVc)Au=u.

On the other hand, from z = (a V b) A u it follows z < a V b.
From a A (bVc) < u, we obtain aAb < u;soaAb < (aVb)Au=r.
Thus, z € aob. Similarly, we can verify that y € aoc. Therefore,
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Vu € ao(bV ¢), 3z € aob, Fy € aoc such that u = x V y. Hence
ao(bV ¢) C (aob) V (aoc). Now, consider v € (aob) V (aoc). Then
there is z € aob and y € aoc, such that v =2z Vy. So,aA (bVec) =
= (aAb)V(aAc) <zVy=wv. Similarly, v < aV (b V c). Hence
v € ao(bV ¢), that means (aob) V (aoc) C ao(b V c). Therefore,
ao(bV c) = (aob) V (aoc).

ii) It follows by duality. |
10. Definition. The structure (L, <, %) is called a strictly lattice—
ordered hypergroup (respectively, join space) if and only if

(i) (L, <) is a lattice;

(ii) (L,*) is a hypergroup (respectively a join space);
(ili) V(z,y) € L?, zoy is an interval;
(iv) V(a,z,y) € L3, we have:

ax(zVy)=(axz)V (a*xy) and
a*x(xzAy)=(axx)A(ax*y).
11. Remark. The structure (L, <, o) is a strictly lattice—ordered
join space, according to Theorem 2.
12. Remark. In the hypergroup (L, o), we have:
V(a,b) € L a/b={z € L|a€zob} ={x € L|zAb<a<zVb}.
From here it follows Va € L, a € a/b.

13. Proposition. For any (a,b,c,d) € L*, the following conditions
are equivalent:

1) and<bVcandbAc<aVd,
2) aod Nboc # .
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Proof. 1)==2). From e Ad < bV cand bAc < aVd, we obtain
aNd < (aAd)V(bAc)<aVdand bAc< (aAd)V(bAc) <bVe
In a similar way, it follows:

aNd<(aVd)A(bVc)<aVdand

bAc<(avVd)A(bVc)<bVe.
Moreover, we have

(and)vV(bAc)<(aVd)A(bVc).

Set u=(aAd)V(bAc)and v = (aVd)A(bVc). By the previous
inequalities we obtain: [u,v] C (aod) N (boc), so 2) holds.

2)==1) Let p € aod Nboc. Then a Ad < p < bV c and
bAc<p<aVd, whence we obtain 1). n

83. Modular lattices and join spaces

In the following, the hypergroupoids attached to semi-lattices and
lattices are studied. Moreover, characterizations for modular lat-
tices are presented. Results on this direction have been obtained
by St. Comer, J. Mittas, M. Konstantinidou and afterwards by G.
Calugireanu and V. Leoreanu. In the following, we mention some
of them.

Let (L, <, V) be a semi-lattice and let us consider the following
hyperoperation on L, introduced by Nakano [298]:

V(z,y)€L*, zdy={2€T|zVz=2Vy=zVy}
We notice that
V(r,y) € L*, zVy€z®y.

< L,® > is called the attached hypergroupoid to the semi-lattice
(L, <,V). Notice that < L,® > is a quasi-hypergroup and if L has
a zero, then 0 is a scalar identity of < L, ® > .
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14. Theorem. (Comer) If < L, <> is a modular lattice with zero,
then (L, ®) is a canonical hypergroup.

We shall prove this theorem by a different way (see Lemma 24
- Prop. 35).

15. Proposition. For any (z,y, 2,w) € L*, we have:

oy Nzow)#0= cd2)N(ydw) #0.

Proof. Lett € (z®@y)N(z® w) Then

teEx®y = ycErdt=ycrP(z20w)=(cd2)dw=—>
= 3Js€zxPz, Y€ sOuw=>s€ydw.

So, (z @ 2) N (y dw) #£0. =

16. Corollary. For any (z,y) € L?, we have

(zoz)N(yoU) #0.

17. Proposition. If the hypergroupoid < L,® > associated with
a semi-lattice is a hypergroup, then it is a join space.

Proof. It follows by the above proposition and the equality:
V(z,y) e L?, z/y=zdy. =

Let us suppose in the following that < L, & > is a hypergroup.

18. Proposition. For anyn € IN*, Vi € {1,2,...,n}, ; € L, we

have
n

T, Dz #0
1

i=

Proof. We prove it by induction on n.
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For n = 2 we have just verified the thesis, so we suppose

n—1
nxi ®xz; # 0.
i=1
n—1
Let z € ()z;®z; and w € 7, ®T,. We have 2D zNwdw # 0,

i=1
whence thereis u € z® zNwdw. We have u < z and u < w, hence

n
for any i € {1,2, ...,n}, u < z;, whence u € [ z; ® z;. [ ]

i=1
Let us consider now

I=zoz

zel

and suppose that I # . If z € I, then we have z € z®x, that means
z < z, for any x € L. So, L has a minimum, such that z = 2 @ z.
It follows:

19. Proposition. If I # 0, then L has minimum, which we
denote by 0 (it is a scalar) and the attached hypergroup (L, ®) is a
canonical one and conversely, if (L, ®) is a canonical hypergroup,
then I # 0.

20. Remark. For any z € L, we have that h, = z ® z is an
invertible subhypergroup of the hypergroup (L, ®).

21. Proposition. Let h be a subhypergroup of < L,® >. Then

h=J(z® ).

z€h

Proof. Let z € h. It follows z® z C Uz@z and since z € 2D z it
z€h

follows that z € | Jz @z, hence h C | Jz & z C h, so we have the
z€h z€h
equality. [

22. Remark. For any (z,y) € L?, we have:
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(i) hgy = (z @ x) N (y @ y) is a subhypergroup of L.

(ii) if there is inf (z,y) = z Ay, then

23. Proposition. For any (z,y) € L?, one has

(zor)U(yoy) C(z02)®([YOY) =(zVY)© (EVY) = havy

Proof. Let us consider the following equivalence relation on L,
denote by Mod a, where a € L :

r=y(moda) <= aVr=aVy.
The equivalence class of r is
Colz)={yeT|avz=aVy}
First of all, let us prove that
V(z,y) €T Ca(z) ® Caly) = (aVz) ® (aVy).

Indeed, if z € Cy(z) ® C,(y), then 3z’ € C,(z), 3y € C,(y) such
that z€ 2’ @y, so 2V ' =2Vy =2'Vy, whence 2V (a V') =
=zV(aVy)=(aVz)V(aVy'), hence z € (aVz)®(aVy). Then,
Co(z) ® Co(y) C (aVz) ® (aVy). Obviously, we have

(avVz)®(aVy) C Culz) @ Caly)-

Then Co(z)® Cu(y) = (aVz)®D(aVy). On the other hand, Vz € L,
we have C,(z) = z®(a®a). Indeed, if z € C,(z), thenaVz = aVz,
hence z& (a®a) = z® (aDa), whence z € zd (a®a). Conversely, if
z € z®(ada), then zH(ada) C zd(ada) so zD(ada) = zd(ada),
hence a V z = a V z, that means z € C,(z).

We have (zVy) @ (zVy) =Co(y) ®Ce(y) = [y (z D z)] ®
Blyd(zdz)] = (zdx)D(ydY). If 2 € (zPzU(ydy), then z < zVy,
that means z € (zVy)®(zVy), so (zdz)U(ydy) C (zdz)D(ydy).

]
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Now, let L be a lattice and we define the hyperoperation on L,
as above: for each (a,b) € L?, a®b = {z € L | aVz = bVz = aVb}.

24. Lemma. For (a,b,c) € L, if S={ye€ L|aVbVy =
=aVeVy=bVeVy=aVbVc} then (a®db)dcCS.

Proof. Let yc (a®b)®c. Thendz € L:aVz=bVz=aVb
and zVc=2Vy=yVcand hence (aVbd)Vy=(aVz)Vy=
(avz)Ve=(aVb) Ve
aV(cVy)=(aVec)Vy
(avd)vy=(0bVz)Vy=bV(zVy)=bV(cVy)=(bVe)Vy.
Therefore y € S. |

=aV(zVy) =aV(zVe) = { respectively

25. Corollary. Ifye S, thenbVvc<bVyVa; bvc<cVyVa
andyVa<yVbVcyVa<aVbVec.

26. Lemma. If L is a modular lattice, then S C a® (b & c).

Proof. For an arbitrary y € S set z = (y V a) A (bV ¢). We verify
z€bdcandy€cadz.

Indeed, bVz = bV [(yVa) A (V)22 (bVyVa)A(bVe)==bVc
and, similarly, ¢V z = bV c¢. On the other hand,

yVz=yV[bV)A@Va))ZEBV)A(yVa)=yVa

and, similarly, aV z = y V a (the *-equalities hold, according to the
above consequence). Hencey € a® 2z C a® (bdc). [

27. Corollary. In a modular lattice, we have: ¥V (a,b,c) € L3,
(adb)dc=ad® (bPc).

Proof. We already have (a ®b) ®c C S C a® (b & ¢). The
subset S is invariant to permutations of {a, b, c} so we also obtain
(b®c)®a CS. By the commutativity, we have a® (b c) C S
and so a ® (b®c) = S. Analogously, (a®b)dc=S. [

28. Corollary. If L is a modular lattice, then < L,® > is a
semihypergroup.
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29. Remark. In an arbitrary lattice, the hyperoperation "@” is
not generally associative.

Indeed, in the 5-elements non-modular lattice N5 (N5={0, a, b, c, 1},
where 0 < b < a < 1,0 < ¢ < 1 and allc, bllc, where ”||” means
that the corresponding elements are not comparable) one verifies
that (a®b)@dc={1} #{l;c} =a® (bDc).

Moreover, the following interesting characterization holds

30. Theorem. The hyperoperation "®” is associative if and only
if the lattice L is modular.

Proof. If L is not modular, using a well-known characterization,
L contains a 5-elements sublattice isomorphic to the above one:
{m,a,b,c, M}, where m < b<a <M, m<c< M and d|c, bllc.

But thenc€a® (b®c) and c ¢ (a ® b) & c, hence ”@®” is not
associative.

Indeed,ce {y€L|aVy=MVy=aVM=M}=a®dMC
C a®(b®c), because M e{z € L | bVz = cVz = bVc= M} = bdc.
Finally, a®b = {zr€L|aVz =bVr=aVb=a} ={z€Ll|z<a=
=zVb}sothata@bdN{z € L |z <b} =0. On the other hand,
c€(a®b)dc={yeL|zVy=cVy=2zVc where z € a ® b}.
So, if z € a®b, then z < ¢, whence z < inf(a;c) =m andso z < b,
contradiction with the above void intersection. u

31. Lemma. < L,® > is a quasi-hypergroup.

Proof. Indeed, V (a,b) € L?; 3z = aVb:a € b®x = b, because
aVz=bVz=aVb HenceVbe L:b®dL=Ldb=1L. [

32. Corollary. For a modular lattice L, < L,® > is a hypergroup.
33. Remark. Each element in L is a partial identity in < L, ® > .
Indeed, z € x & z holds for each z € L.

34. Remark. For an arbitrary lattice, V(a,b,c) € L>:a€bdc
= bca®c; ceadb.
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35. Proposition. If L is a modular lattice with zero, then
< L,® > is a canonical hypergroup.

Proof. Indeed, 0 is the unique scalar identity (that is Va € L,
{a} = 0@ a and for any identity we have e = e ®0 =0® e = 0;
each element has a unique inverse: itself (indeed, 0 € a & a and
0 € a® b= a =b) and the reversibility follows from the previous
remark. |

Moreover,

36. Theorem. Let L be a modular lattice. The following condi-
tions are equivalent:

(i) < L,® > is a regular hypergroup;
(ii) < L,® > is a regular reversible hypergroup;
(i) < L,® > is a canonical hypergroup;

(iv) L has a zero.

Proof. According to the proof of the above theorem it remains
only to remark that if m is the identity then YVa € L we have
aemda={r€L|mVa=mVzez=zVa} and soVa € L,
m < a. ]

37. Theorem. For a modular lattice L, < L,® > 1is a join space.

Proof. We only have to verify that a/bN¢/d # 0 implies (a ® d) N
Nb@dc) # 0 wherea/b={r € L|acxzdb}. Buta/b=adb
and so we have to verify that if x € (a ® b) N (¢ ® d) (that is
aVz=bVz=aVband cVz =dVz =cVd)) then there is
an element y € a®dNbdc. Set y = (aVd)A(bVc). We have
aVy = aV[(aVd)A(BVe) 22 (aVd)A(aVbVe) = (aVd)A(aVazVe) =
=(aVd)A@@Vevd)=aVdand dVy =dV[aVd) A @bV c)2d
(aVd)A(bVevd) = (aVA)A(bVzVd) = (aVd)A(aVbVd) = aVd
so that y € a @ d and, similarly, we have y € b c. [ |
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Notice that Theorem 37 can also be obtained from Proposition
17. From Theorem 30 and theorem 37 it follows

38. Corollary. The lattice (L,V,A) is modular if and only if
< L,® > is a join space.

39. Remark. The hypergroup < L, ® > is not complete.

We can also consider the dual hyperoperation, that is V (a, b) € L?,
a®b={z € L|aAz=>bAz=aAb}. By duality, the following
results are verified:

40. Theorem. Let L be a modular lattice. The following condi-
tions are equivalent:

(i) < L, ® > is a regular hypergroup,

(ii) < L, ® > 1is a regular reversible hypergroup,

(iii) < L, ® > is a canonical hypergroup,

(iv) L has a greatest element.

41. Theorem. For a modular lattice L, < L, ® > is a join space.

42. Theorem. For a lattice L, the following conditions are equi-
valent:

(i) L is modular;

(i) < L,® > is a hypergroup;

(iii) < L, ® > 1is a hypergroup.

43. Proposition. Let L be a modular lattice. A subset I of L is an
(invertible) subhypergroup of < L,® > if and only if I is an ideal
of L.

Proof. If I is a subhypergroup of < L, ® >, then for every (a, b) € I

we haveaVb e a®db C I. Moreover,ifa€ T andz < a;z € L
then z € a®a C I and so, I is an ideal of L.
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Conversely, let I be an ideal of L. For (a,b) € I?,ift€a®b,
thent < aVbandsot € I. For every (a,b) € I?, there is an element
x =aVbe I such that a € b ® x. Hence, I is a subhypergroup of
<L®>.

We finally remark that if I is a subhypergroup of < L,&® >
then it is invertible.

Dually, it follows the following

44. Proposition. Let L be a modular lattice. A subset I of L is
an (invertible) subhypergroup of < L, ® > if and only if I is a filter
of L.

Moreover, we have

45. Proposition. If L is a modular lattice, the only ultraclosed
subhypergroup of < L, ® > (resp. < L, ® >) is < L, > (resp.
<L, ®>).

Proof. Suppose that I is a ultraclosed subhypergroup of L. If
I#L,seta¢ Iandt€l ThenaVt el and so

aVte (adN(ad (L-1)).

Hence (a® I)N(a® (L — I)) = O holds for every a € L only if
I=1L.

46. Corollary. If L is a modular lattice, then

W<Lo> =Wep ®@> = L.

Now, we shall mention some important (for which follows) pro-
perties of the join space < L, ® > associated with a modular lattice
(L, V,A).

One can verify these properties, using the equivalence relation

(1) r€a®a<=zr<a.

47. Proposition. For e modular lattice L, the associated join
space < L,® > satisfies the following properties:
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(i) Va€e L, a€a®a; ad a is a subhypergroup of < L, ® >;

(i) V(a,b) € L?, () z@®z=(aVb)®(aVb);
{a,b}Czdx

(iii) V(a,b) € L?, a®anbdb C (aAb)D(aAb) and aAb € a®anbPb;
(iv) V(a,b) € L?, {a,b} Cadb=a =0

(V) VaeL, a®a®a=ada;

(vi) V(a,b) € L?, a®b=[a® (aVD)]N[bD (aVd)];

(vii) ifa<b, a®b= {b}u{z€L |z <b, zlla, AycL, a<y<b,
z < y}, where we denote by z||a two incomparable elements
of L.

In the following, we shall characterize the join space associated
with modular lattices.

We notice that in a join space < L,® >, associated with a
modular lattice the following condition holds:

V(a,b) € L? Fz €L, €L, {a,b} Cz®x,

(@) | 2®z=t®t, a®b=adtNbDL.
{a,b}Cxdzx

Moreover, if a € t ® t — {t}, then
uel |uetdt—{t}, u¢a®a, adu® u, €L,
S o ), wfaoa fuow L)
acy®y—{y}, ucy@®y—{y}, yetaot—{t}

The condition (@) is equivalent to the set of conditions (ii), (vi)
and (vii), written using only the hyperoperation ”&” (not the order
” S”)-

48. Theorem. A join space < H,o > is associated with a lattice
(H,V, ) if and only if it satisfies () and the following conditions:

(1) Y(a,b) € H? a/b=adb;
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(2) Vae H, adada=adaq;
(3) V(a,b) e H?, Isca®anbdb, adanbdbC sos;
(4) V(a,b) € H?, {a,b} Ca®db<>a=0b.

Proof. From Proposition 47, it follows that the above conditions
are necessary. For the sufficiency, we define a binary relation on H
as follows:

a<besacbob<bbeapd

This is an order on H according to (1) [reflexivity: Va€ H, a € a®al,
[transitivity: a € bdb,b € cdc = a € chedede = cdede = cdd]
and again (1) [antisymmetry].

In order to obtain a lattice structure, for arbitrary elements
a,b € H, we consider t, where

l zez=tot
{a,b}Cxdz

and verify that ¢ = sup(a, b). Indeed, {a,b} € t Dt so that a < ¢,
b < t; moreover, if a < 3,b < s, then

tetdt= () zdzCsds
{a,b}Czdz

because {a,b} € s® s sot < s. The antisymmetry proves that ¢ is
unique. On the other hand, for an arbitrary element (a,b) € H?,
we consider s, such that

s€Eadanbdbanda®aNbdbCsds

and verify that s = inf(a, b). Obviously, we have s < a, s < b and if
u < a,u < bthen u € adanbdb C sDs, whence u < s. The element
s is unique because {s1, s2} € a®aNbdb C 31D 51N sy D s, implies
51 € 83D 52 and s3 € 51 @ 51 and so s; = sz. Hence, (H, sup, inf) is
a lattice. Its modularity is easily checked.

In what follows, we use the standard notations

sup(a,b) =a Vb, inf(a,b) =a Ab.
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Now, we verify the inclusion a®b C {z € HlaVz=bVz=aVb}:
let z € a®b; from {a,b} C t®t wheret = aVb it follows z € a®b C
totdtdt =tdt and so z € (aVbh)D(aVb) that is z < aVb. Hence
aVz<aVband bVz <aVb But {b,2} C (bVz)®d(bVz) and so
bz C (bVz)®(bVz)®(bVr)®d (V)= (bVz)® (bVz). Using
(1), wehavez € a®b=a/bandsoacbdz C (bVz)®d (bVz)
whence a < bVzsoaVb < bVz. We obtain aVb = bV z. Similarly,
we haveaVb=aVzandhencez € {z€ HlaVz=bVz=aVb}.

Conversely, let x € H be such that aVz=bVz=aVb.

It folows z <aVz=bVz=aVb.

We distinguish the following cases:

Case l:'ifa=bthenz<aandsoz€a®a=adb.

Case 2: if b < a then z < a = aVb. If z = a nothing is to be
proved. If z<a then b<z is not possible (otherwise a = bV z = 1)
nor b > z (otherwise @ = bV z = b) and so b||z. Moreover,
there is no element y € H such that b<y<a, z<y (otherwise
a=bVz <y < a). Therefore we obtain z€a @ b, using ().

Case 3: Similarly, if a < b, one verifies that z € a ® b.

Case 4: if a||b then a < a V b,b < aV b. We first check that
z € a® (aVb). This is clear for z = a V b so in what fol-
lows we suppose £ #% aVb Nowz < a = aVz < a &
aVb<a<=>aVb=a and analogously a <z => z =a Vb,
both contradictions, so that z|la and £ < a V b. As above z €
€{avbdlU{uc Hlu<aVbulla, BycH,a<y<aVbu<y}=
=a®(aVh).

Similarly, t € b® (aVb) andsoz €a® (aVb)Nbd (aVd) =
=a®tNbdt. Hence, by the condition (), it follows £ € a ® b
and this completes our proof. [ |

49. Lemma. Let (L,V,A) be a lattice and f : L — L be a bijective
map. The following conditions are equivalent:

a) V(a,b) € L?, f(aVb) = f(a) A f(b);
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b) V(a,b) € L?, f(a®b) = f(a) ® f(b).

Proof. (a)==(b). Clearly, f(a®b) = {f(z) |z € L; zVa =zVb =
=aV b} and so f(z) € f(a) ® f(b), by (a).

Conversely, if t € f(a) ® f(b), there is an element € L, such
that ¢t = f(x), since f is onto, and so f(zVa) = f(zVb) = f(aVD),
again by (a). Since f is an one-to-one map, it follows z € a®b and
t€ fladb).

(b)=>(a). For every z € a ® b, it follows f(z) € f(a) ® f(b)
and so f(z) A f(a) = f(z) A f(b) = f(a) A f(b) < f(z). Set « =
= a V b we obtain f(a) A f(b) < f(a V b). Conversely, observe that

f(z) € f(a)®f(a) holds for each z € a ® a (and each a € L).
Hence f(a) = f(z) A f(a) whence f(a) < f(z). Again, setting
z =aVb, we have f(aVb) < f(a). Similarly, f(aV b) < f(b) and

so f(aVvb) < f(a) A f(b).
Dually, it follows the following

50. Lemma. Let (L, V,A) be a lattice and f : L — L be a bijective
map. The following conditions are equivalent:

(@) flanbd)y=f(a)V f(b); V(a,b) € L%
(b) fla®b) = f(a) ® f(b); V(a,b) € L%

51. Remark. If (L,V,A) is a Boole lattice and f : L — L is
defined by f(a) = d/, Va € L, then all the above conditions are
fulfilled.

52. Remark. The condition (a) characterizes the hypergroup
isomorphisms f: < L,®>—< L, ® > .

§4. Direct limit and inverse limit
of join spaces associated with lattices

In this paragraph, we prove that the direct limit (inverse limit) of
a direct (respectively, inverse) family of join spaces associated with
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modular lattices is also a join space associated with a modular
lattice.

We have utilised the notions of direct limit and inverse limit
done by Grétzer in [447].

If (H,V,A) is a modular lattice, then we can associate (as in
§3) a join space structure on H as follows:

V(z,y) € H?, zoy={2 € H|zVy=2aVz=yVz}

Let us denote by JSL the class of join spaces associated with mo-
dular lattices, as above.

In the following, we shall utilise the following result proved in
the previous paragraph.

53. Theorem. A join space < H,o > belongs to the class JSL iff
it satisfies the following conditions:

1) VY(a,b) € H?, a/b=aob;

2) Y(a,b) € H?, acaoca=aoa;

3) V(a,b) € H?, 3s€aoanbob, acanbobC sos;
4) V(a,b) € H?, {a,b} Caob <= a=b;

5) V(a,b) € H?, 3z € H, 3t € H, {a,b} Czo7,
[l zoz=tot, aocb=aotNbot;
{a,b}Czozx

6) Va € bob— {b}, we have

aob={b}U{uec H|luecbob—{b},u¢aca,ad uou;
ByeH acyoy—{yl,ucyoy—{y},ycbob— {b}}.

1. Direct limit of a direct family of join spaces associated
with modular lattices

54. Definition. A family {(H;, ®;}icr of join spaces is called a
direct family if:
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1) (1,<) is a directed partially ordered set;
2) V(i,j) € I?, we have i # j <= H, N H; = 0

3) V(i,§) € I?, i < j, there is a homomorphism ;; : H; — H;
such that if i < j <k, then pjx 0 i = pix and Vi € I, ;; is
the identity mapping.

Let us define on H = UH,-, the following equivalence relation:
i€l

z ~ y iff the following impleication is satisfied: (z,y) € H;xH; =
dk eI, k>1i, k> j, such that pi(z) = ;r(y)-

If z; € H; and i < j, we denote ¢;;(x;) by =; and we consider
H = {zZ | z € H} the set of equivalence classes.

H is a hypergroup with respect to the following hyperopera-
tion:

Toy= {2 I S I, 3.'1,',' € fi‘ﬂHi, 3y1 egﬂHi,
32:,‘ EZﬂHz 2 EIL’,@ZyZ}
and it is called the direct limit of the direct family {(H;, ®;)}icr-

55. Proposition. If {(H;, ®;)}icr is a direct family of semihyper-
groups, such that Vi € I, 3k € I, ¢ < k, for which (Hy,®x) is a
join space, then (H,*) is a join space.

For each i € I, we shall associate the join space (H;, o;) with
the modular lattice (H;, Vi, A;).
So, V(z;,y;) € H?, we have:

Tioiy ={z € Hy | o Viyi = 4: Vi 2o = 4 Vi 2}
56. Theorem. The direct limit of a direct family of semihyper-

groups, {(Hj, 0;) }Yier, such thatViel, 3kel, k > i : (H, o) €JSL,
is a join space (H, o) which belongs to JSL.

Note. To simplify the notations, we shall denote H; € JSL instead
of (Hi, 0,') € JSL.
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Proof. We shall verify the conditions of the Theorem 53.
1) Y(a,b) € H’, we have
a/b={ceH|acboc}={¢c|Fiel:a;€bo;c}=
I{EIHkEI, k>1i: H, e JSL, ckEak/bk-——akokbk}z
={c|e€aob} =aob,

={EET—fI3i€I:c,-€tioiai, djerl:tj€aj05a;} =
={ceH|3kel, k>4 k>j:H,eJSL,
Ck €Etr o ax, bk €agopar} =

={E€F]BkEI;ckeakokakokakzakokak}zaoa;

3) V(a,b) € H’, we shall prove that 35 € H, such that
seaoaﬁbobandaoaﬂl_)Oszos

Indeed, if f € @oanNbob, then 3i € I : t; € a; o; a; and
djel:tjebjojb;, hence Ik € I,k >4 k> j: Hy € JSL and
tx € ap op ap Nbg op by C s 0 Sk, where s € ay op ax N by o b.
Therefore € 5035, whence GoaNbobC 505and 5€ @aoanbob.

4) Notice that Va € H, @ € @ o a, since 3k € I, such that
Hy € JSL, so VYa, € Hy, ax, € ay of ay.

On the other hand, if (a,b) € H- such that {a,b} C aob, then
Ji€l:a; €a;0;b;and 3j € I : b; € aj0;b;, whence 3k € I, k > 1,
k > j: Hy € JSL and {ag,br} C a o b, hence a; = bi. So, @ = b.

5) We shall prove that V(a, b)EH Az, eH {a,b} C 307,
ﬂ ToZ=tof and Gob=aotNbot. Indeed, since keI, H;, € JSL
{a,b}CZoz
it follows 3z € Hy : {ak,bx} C xx ok zx, whence {@,b} C Z o Z.
Moreover, 3t; € Hy, : ﬂ Tk Of T = lj o tr, that means
{ak b} CzroRTE
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{ak,bi} C trorty C zgox Tk, for any x : {ax, br} C xx ok, whence
{a,b} C tot C Zoz, for any {a,b} C Zoz. Hence, (| ZoZ =1{ot.
a,b}Czox

On the other hand, a og by = a ox tx Nby o ti, s?ince H; € JSL.

Letce€ aob. It follows 3i € I : ¢; € a; 0; b;. Let j e€l, j>1,
such that H; € JSL. We have c¢; € a; 0; b; = a; 0;t; Nb; o5 t;. So,
c€aotnbot.

Conversely, if 2 € aotNbof, then 3i € I : u; € a; 0; t; and
djel:uj€bjo;t;.

By hypothesis, it follows 3k € I, k¥ > ¢, k > j such that
Hy € JSL. One obtains uy € ay of tx N by o t, = ay, o by, hence
@E€aob.

Then, Gob=agotNbol.

6) Let bc H and @ € bob— {b}. We denote by A the set

{acH|ucbob—{b},u¢aoca,a¢aou, v
AjeH:acgog—{gl,acgog—{7},7€bob—{b}}.
We shall prove that @ o b = {b} UA.
For any i € I, we denote by A; the set:

{u; € H; | u; € b;0; b; — {b;}, w; & a; 0; a;, a; ¢ u; o; uy,

Ay € Hi:a; €y; o; yi—{yi}, wi €vi o yi—{yi}, yi €bi 0; bi—{bi}}.

Let @€ @aob, where @ € bob— {b}; so, Jiy € I : u;, € as, oy, by,
Since @ € bo b — {b}, it follows that Ji, € I : a;, € b;, o, b;, and
Vi e I, a; 7é b,'.

By hypothesis, thereis i € I, > 4,1 > 45, such that H; € JSL;
hence a; € b; 0; b; — {b;} and u; € a; 0; b; = {b;} U A;.

Case 1°. If u; = b;, then 4 = b. In the following, we suppose that
@ # b.
Case 2°. If u; € A;, then u; € b; 0; b; — {b;}, hence @ € bo b.

According to the above assumption, we have % € bo b — {b}.
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Suppose @ € @ o a. It follows 35 € I : u; € a;j0; a;. There is
kel, k>i, k> j,such that H, € JSL. We have u; € a; oy a;,
U € ay o bx, whence up = by or up € Ay. Since @ # b, it follows
ug € Ay, s0 ug & ax o ax, contradiction. Therefore, @ ¢ @ o a.

In a similar way, we can verify that @ ¢ @ o a.

Suppose now that 3y € H:a € oy — {7}, & € o g — {7}
and § € bob— {b}.

Since @ € yo g it follows Ip € I : a,, € y, 0, y, and since @ # 7,
it follows Vi € I, a; # y;. Similarly, we have 3r € I : u, € y, o, ¥,
Hel:y€byopby, and Vi € I, u; # y; # b;.

Letse€l s>p,s>1r s5>4¥ s>1iand such that H, € JSL.
We obtain

Jys € H, :a, € Ys Os Ys — {ys}7
Us € YsOs Ys — {ys} and Ys € bs Os bs - {bs}

On the other hand, since u; € a; o; b; it follows u, € a, o, by and
since H; € JSL and @ # b, it follows u, € A,, whence one obtains
that: /st € H; : a; € ys 05 ys — {ys}, Us € Ys Os Ys — {ys} and
Ys € bs o5 b; — {bs}, contradiction.

Therefore the last assumption is false, so
AjeH:aegoj—{glacioy—{y}and gebob— {b}.
Then, we can conclude that @ ob C {b} UA. Conversely, we have

beaob,sinceacbob=b/b.

Let @€ A Then 3j € I : u; € bjo; b; and Vi € I : u; # by,
ui¢a1° a;, az¢uzozuz

Moreover, since Aj € H:a € jog—{g}, s € joy— {7},
§ € bob—{b}, it follows that Vi € I, Ay; € H; such that a; € y;o;y;,
U; € Yi O Ui, yzeb 0; b; andaz'?éyu u; % Yi, Yi 7 by

Since @ € bob — {b}, that is 3k € I : ar € by of by and
Vi€ I, a; # b; and since 4 € A, it follows 3j € I : uj € b; o; b;,
Viel: u; 71—‘ b, u; ¢ a; o; a;, a; ¢ u; o; u; and Vi € I, /By, € H;,
Q; € Yi O Yi, U € Y 0 Yi, Yi € by 0;b; and a, 4 y;, wi 4 yi, Yi # b;.

Let s € I, s > k, s > j and such that H, € JSL. We have
as € b; 0, b — {b;} and u, € {v; € H, | vs € b 05 b, — {b,},
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Vs ¢ as O5 Ag, Qg ¢ Vs Os Vs, /ﬂys € Hs 185 € Ys 05 Ys — {ys}a
Us € Ys 05 Ys — {Us}, Ys € bs 05 bs — {bs}} = As, whence it follows
us € a5 0, by, hence @ € @ ob. Therefore, aob = {b} UA and we can
conclude that H € JSL. »

57. Remark.

1° In the lattice (H,V,A) we have a < b <= a€bob <= Ficl:
a; € b;0;b;. If 3(3, 5) € I?, such that H; € JSL, H; € JSL and
a; € b o; b; (that means a; < b;) and b; € a; o; a; (that means
bj < a;), then 3k € I, k > i, k > j, such that H; € JSL and
ay < by < ay, whence a; = by, hence @ = b.

2° For any (a,b) € Fz_, sup(a, b) = t (where £ satisfies the condi-
tion 5)) and inf(a, b) = 5 (where 3 satisfies the condition 3)).
(This follows by the proof of Theorem 53.)

2. Inverse limit of an inverse family of join spaces
associated with modular lattice

First, let us recall the notion of inverse limit of an inverse family of
join spaces.

58. Definition. A family of join spaces {(H;, ®;)}ics is called an
inverse family if:

1) (1,<) is a directed partially ordered set;

2) V(¢,7) € I?, we have H; N H; = 0 <= i # j;

3) V(i,j)€I? i<j, there is a homomorphism of join spaces
¥y« Hi—Hj, such that: if >35>k, ¥ 0 ¥ = 9y and Vie ],
;; is the identity mapping.

Let (H = HHi,®) be the direct product of the family
i€l
{(H;,®i)}ier and H = {z € H | ¢ij(z:) = =z, Vi > j}, where

T = (Ti)ier-
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If H 7 @, then we define on H the hyperoperation: 0y =
—x®yﬂH

If I has a maximum s, then H # () and for each (%,7) € H?,
ZOy # (. Indeed, if 2 € T ® ¥, then z; € z, 05 Y5, whence Vi € I
Vsi(2s) € T; 0; yi, hence Z = (i(2;))ier € H and Z € Z0O7.

If H # 0, then (H,O) is called the inverse limit of the inverse
family {(H;, ®;)}ier-

59. Theorem. Let {(H;, 0;)}icr be an inverse family of join spaces,
such that Vi € I, H; € JSL. Moreover, let us supose that I has a
mazimum. Then (H,O) is a join space and moreover H € JSL.

Proof. We shall verify the conditions of Theorem 53.

1) Y(%,7) € H?, i/y—{z€H|x€yDz} {z€H|Vz€I
i €yoizny={Z€H|Vieze€n/yi=z0y}=3Q§NH=
= iuga Whence f = (xi)iefv g = (y‘i)iEI'
2) erﬁ Z = (;)ser1, we have
i0z0F = |Jioz= |J {teH|Viel:yectioz}=
Tez0oz - tezOx
Z{UGHIV’IIEI:UiGtiOiiIIi, t,-e:v,-oixi}g
(_Z{ﬂeﬁ}\ﬁeI:uiExio,-xio,-zizm,-o,-zi}:
=Z®%ZNH = Z0%.
Conversely, VI € H , £ € zOZT, because Vi € I, x; € x; 0; x;.

So, ZOz C zOZ0OZ, hence we obtain the equality.

3) For any @ = (a;)ier, b= (bi)ier of H, we shall prove that
there is Z € aDa N bDb such that ¢0g N b0b C 7007,
Let s = max I. Since H, € JSL, there is

zs € Hs P 2s easosasnbsosbsC'?".sos‘z's-
Hence Vi € I we have

Vsi(2s) € Ysi(as) 0; Ysi(@s) N sibs) 0; Psi(bs) = a; 0 a; N b; 0; b;.
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Therefore, 3z = (1/Js,(zs))Ze 1 € H, such that Z € @0a N bOb.

Let ¥ € a0a N bOb. Then ts € a; og asﬂb o, by C 25 05 24,
whence Vi € I, t; € v.(2s) 0 Psi(2s), s0 t € 70%. Therefore,
a0a N b0Ob C ZOZ.

4) For any T = (Zi)icr, ¥ = (¥i)ics we have {Z,y} C z0O7 iff
i=47.
Indeed, if {Z,7} C ZOF, we have Vi € I, {z;,y:} C z; o; y;,
whence z; = y;, since H; € JSL. Hence T = §. Conversely, we have

VZ € H, ¥ € T0Z, because Vi € I, z; € x; o; x;, where T = (z;);e;-

5) We shall prove now that V@ = (a;)ics € H,Vb= (bi)ier € H,
3% € H, 3 € H : {g,b} c 0%, ﬂzDz=tDtand
a0b = a0f N b1 {ab}czoz

Indeed, if s = max/, then 3z, € H; : {a;s,bs} C zs o5 x5,
3ts €l: ﬂ Ts05Ts = t505ts and as osbs = @, 0,tsMbs osts,

{as,bs}Czs0sxs

since H, € JSL. It follows Vi € I,
{"/)si(as).: a;, d}si(bs) = bz} - "[)si(ms) O d}si(xs),

whence 3% = (si(7s))icr € H : {,b} C FOZ. .
On the other hand, let £ = (¥(ts))ier € H and ¥ € 0. It
follows
Us Ets 055 = n X5 Os Ts,

{ambs}czsoszs

whence Vi € 1,

v; € ﬂ Vsi((8s) 05 Ysi(Ts),

{24,b:}Cthsi(zs)0ithsi ()
hence ¥ € ﬂ T0O7.

Ghcaoz
Conversely, since {as, bs} C ts o ts, it follows Vi € I,

{aibi} C Ysilts) 0i Ysilts),
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so {@,b} C tOf. Therefore, (| 0% =10

{ab)czoz
Finally, we have to verify the equality:

a0b = a0f N bOL.

We have @ € aDb iff Vi € I, u; € a; o; b;, that means Vi € I,
u; € a; 0;t; Nb; 0; t; (since Vi € I, H; € JSL), that is

tea®inNbeinH =aninboi.
Therefore, a0ob = a0t N bOt.
6) Let (a,d) € H :aebob- {b} and let us denote
A= {iiecH|uebdb-{b},a ¢ a0a,a ¢ a04,
Ay € H :a € §0y — {7}, € 0§ — {5}, 7 € b0b — {B}}.

We shall verify that @0b = {b} U A. Since @ € b0b — {b} it
follows Vi € I,a; € b; 0; b; and Jip € I : a;,#b;,. It follows a, # bs,
since otherwise from a, = b, one obtains Vi € I , a; = Ys(as) =
= 1i(bs) = b;, which is false. So, a; € bs o5 b; — {bs} and since
H, € JSL it follows a; o5 bs = {bs} U A,.

Let & € @Ob, that is Vi € I, u; € a; o; b;. Then u, € {b,} U A,.

Case 1°. I{Us = bs, then Vi € I, U; = ’([)s,(’u.s) = 7/Jsi(bs) = bi,
whence % = b.

Case 2°. If u; € A,, then we have u, € bso,bs— {bs}, us ¢ aso;as,
Qs ¢ Us 05 Us, ﬂys € Hs jas € Ys Os Ys — {ys}y Us € Ys Os Ys — {ys}
and ys € by o5 bs — {bs}.

It follows that Vi € I, u; = 15 (u;) € b; o; b; and since @ € H,
we obtain % € bOb — {b}, because u, # b;.

Now, suppose that & € aOa, that is Vi € I, u; € a; o; a;,
contradiction with u, & a, o5 a,. So, & ¢ aDa and similarly we
have @ ¢ @0u. We suppose now that 3y € H:d e g0y - {7},
i € 0y — {7} and 7 € bOb — {b}. So, Vi € I, {a;,u;} C i 0w,
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¥; € b; o; b; and 3(4y,1z,13) € I3, such that a;; # vi,,ui, = ¥;, and
Yiz = bis.

From a;, # y;, we obtain a; # ys and similarly we have u, #
# Ys # bs. Hence, Jy; € H, @ a5 € Ys05Ys — {Ys}, Us € Ys0sYs — {¥s}
and y, € b, o5 b — {bs}, which is false. Therefore, we can conclude
that % € A. Then abb C {b} UA.

Conversely, we have b € a0b since @ € bOb = b/b.

Let 5 € A. It follows that v, € b, o, b, = {b,}, otherwise if
vs = bs, then Vi € I, v; = ¥g(vs) = ws,-(bs) = b;, whence 7 = b,
which is false.

Moreover, vs ¢ as o5 as, otherwise we obtain Vi € I,

v; = Psi(vs) € Ysias) 0; Yeilas) = a; 0; a;,
whence ¥ € a0a, which is false. Similarly, we have as ¢ v o5 vs.

Furthermore, Ay, € Hj, such that a; € ys o5 ys — {ys},
Us € Ys Os Ys — {ys}, Ys € bs 05 bs — {bs}

Indeed, if we suppose the contrary, it follows Vi € I, a; =
= Psi(as) € Ysi(¥s) 0 ¥si(yYs) = ¥ 0; y; whence @ € y0F and on
the other hand we have @ # ¥. Similarly, u; € ys o5 ys — {vs},
Ys € bs 05 b, — {bs} imply & € g0y — {7}, ¥ € bOb — {b}, so we
obtain a contradiction.

Therefore, v € A implies v, € A;.

On the other hand, from @ € b0b — {5} it follows as € b, o,
bs — {bs}. Since H, € JSL, we obtain: a; os bs = {bs} U A,, whence
Vs € a50,bs. It results that Vi € I, v; = ¥,(vs) € ¥si(as)o: ¥si(bs) =
= a; o; b;, hence v = aob.

Therefore G0b={b} U A and we can conclude that H € JSL. m

60. Remark.
1°) In the lattice (H,V,A) we have: @ < b <= @ € b0b <>
Vi€, a; € b;o;b; <= Vi € I, a; < b;, where @ = (a;);er and
b - (b )161 )
2°) For any (@,b) € H 2 sup(@,b) = , which satisfies the con-

dition 5) and inf(@,b) = Z, which satisfies the condition 3).
(This follows by the proof of Theorem 53.)
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§5. Hyperlattices and join spaces

The hyperlattices have been introduced by M. Konstantinidou and
J. Mittas. In the following, a connection between hyperlattices and
join spaces is established.

61. Definition. Let H be a set, V' a hyperoperation on H and A
an operation. We say that (H,V, A) is a hyperlattice if the following
conditions are satisfied, for all (a,b,c) € H3:

l.a€aVaandaAa=a;

2.avb=bVaandaAb=>bAgq;

3. (avb)Vec=aV(bVc)and (aAb)Ac=aA(bAc);

4. a€laV(aAb)]AlaA(aVDd);

5. a€aVb=b=aAb.

I) Let X and Z be sets and s : X — P*(Z) a function.
A.R. Ashrafi [10] defined on X the following hyperoperation:

Y (a,b) € X%, a%b={z € X | s(zx) C s(a) Us(b)}.
We present here some of Ashrafi’s results about this subject:

62. Proposition. If s(X) is a V-subsemilattice of P*(Z) then
(X, %) is a commutative hypergroup.

Proof. Let y € (a*b)*c. Then there exists £ € X such that
s(z) C s(a)Us(b) and s(y) C s(z)Us(c). Therefore, s(y) C (s(a)U
Us(b))Us(c) = s(a)U(s(b)Us(c)). Since s(X) is a V-subsemilattice
of P*(Z), there exists t € X such that s(b) U s(c) = s(t) and so
s(y) C s(a)Us(t). Thus, yca* (b*c), thatis (a%b)¥c C a* (b*c).
Similarly, we have a % (b%c) C (a *b) % c. Therefore, the associative
law holds. "

63. Corollary. If s(X) is a V-subsemilattice, then we have

ar¥ag¥ - ¥a, = {x € X | s(x) C s(a;) U---Us(an)}.
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Proof. Let U = a;*¥ag% ---%a, and V = {z € X | s(z) C
C s(a1)U---Us(a,)}. We must prove U =V. We have U C V.
Now, let y € V. Then s(y) C s(a1) U---U s(a,). Since s(X) is
a V-subsemilattice of P*(Z), hence there exists an element z € X
such that s(z) = s(a;) U--- U s(a,—1). By induction, we have
s S S S
T € ar*agy%* --- *a,_; and y € x*a,. Therefore, y € U and so
V CU, hence U =V. .

64. Proposition. If s(X) is a partition of Z then (X, %) is a
commutative hypergroup.

Proof. It is enough to verify the associative law. Let (a,b,c) € X3,

(axb)¥c = {z€ X |s(z)Cs(a)Usb)}*c
= U T¥cC
s(z)Cs(a)Us(b)
Denote T = {z € X | s(z) C s(a) U s(b) Us(c)}. Now we check
that T = (a%b) % c. It is easy to see that (a%b)¥c C T. Let y € T.
Then s(y) C s(a) Us(b) Us(c) and so s(y) = (s(y) N s(a)) U(s(y)N
Ns(b)) U (s(y) N s(c)). Since {s(z) | z € X} is a partition of Z, we
shall consider the following cases:

Case 1) s(y) = s(a) or [s(y) # s(a) and s(y) = s(b)]. In this case
we choose z = y and we have,

y € z¥c and s(z) = s(y) C s(a) U s(b).
Therefore, y € (a*b) *c.

Case 2) s(y) # s(a), s(y) # s(b) and s(y) = s(c). In this case we
choose £ = a and we have,

y € z%c and s(z) = s(a) C s(a) U s(b).
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Thus, y € (a%b) *c.

Case 3) s(y)#s(a), s(y)#s(b) and s(y)#s(c). It follows s(y)=0,
which is absurd. Similarly, T = a%(b%c) and so (a%b)*c =
=a% (b ¥ c). n

65. Corollary. If s(X) is a partition of Z, then we have

a1 ¥as% --- ¥a, = {z € X | s(z) C s(a;) U---Us(ay)}.

Proof. Let a; % --- ¥a,_1 = {z | s(z) € s(a1) U+ -- s(an1)}. Then
we have,

a % - xa, = {z | s(z) C s(al)U---s(an_l)}ian
= U T¥a,
s(x)Csa1)V--Us(an-1)
= U {seX|s()Cslg)Us(a}
s(z)Cs(a1)U---Us(an—1)
Denote

T=ay%--- %a, and S = {z € X | s(z) C s(a;)U---U s(ay)}.

It is obvious that T' C S, so it is enough to verify that § C T.
Suppose Z € S, then s(Z) C s(a;)U---U s(a,), and we have

s(z) = s(@)N(s(a))U---Us(a,))
= [s(2) N (s(a) U--- U s(an-1)] U [s(Z) N s(an)]

If s(Z) = s(a,) then we choose z = a; and we have s(z) C s(a;) U
- U s(an_1), so s(Z) C s(z) Us(Z) C s(a1) U---Us(a,). Now,
we assume that s(Z) N s(a,) = 0, therefore s(z) = s(Z) N (s(a1) U
-+ U s(@n-1)). Choose z = Z. We have s(Z) C s(z) U s(a,), so
s(z) = s(Z) C s(a1) U---Us(a,—1). Hence T = S. =

66. Proposition. Let s(X) be a V-subsemilattice of P*(Z). If
(X, *) is a join space, then s(a) N s(b) # 0, for all (a,b) € X2.
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Proof. Suppose there is (a,b) € X2, such that s(a) N s(b) = 0.
By hypothesis, there exists t € X such that s(t) = s(a) U s(b). We
have t € a/bNb/a, but a%*aNb*b = @. Therefore, (X, %) is not a
join space, which is a contradiction. m

67. Lemma. If s(X) is a sublattice of P*(Z), then (X, %) is a
join space.

Proof. By Proposition 62, (X, ) is a commutative hypergroup.
Now we suppose that (a,b,c,d) € X*. Set s(a) U s(d) = s(u),
s(b)Us(c) = s(v) and s(u)Ns(v) = s(w). It follows w € a*dNb*c.
Hence (X, %) is a join space. [ ]

68. Proposition. If s(X) is a partition of Z then (X, %) is a join
space.

Proof. Suppose s(X) is a partition of Z and (a,b,c,d) € X4,
such that a/bNc/d # 0. If s(a) = s(b), then @ € a*dNb%*c and
if s(c) = s(d), then ¢ € a*d Nb¥c. Therefore, we can assume
s(a) # s(b) and s(c) # s(d). Now, since s(X) is a partition of Z,
it follows a/b = s7(s(a)) and ¢/d = s7(s(c)). By assumption,
we have s!(s(a)) N s7%(s(c)) # O and so s(a) = s(c), that is,
a € a¥dnbsc. Therefore, (X, %) is a join space. n

In the following, we shall consider the set of all subhypergroups
of the hypergroup (X, %) and define a hyperlattice structure on this
set.

Let (X, %) be a hypergroup and £(X ) the set of all sub-hyper-
groups of X.

Let X4 = {9 € X | s(g9) C A}. If A € P*(Z) then we suppose
Xa #0.

69. Proposition. Let Z be a finite set and s : X — P*(Z) be a
function such that (X, %) is a hypergroup. Also, we assume that

8 S

ay xag ¥ - - - ianz{geX | s(g) C s(@a1)U---Us(an)},
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and H is a subhypergroup of X. Then there exists a set T such that

H=Xr.

Proof. Let H be a subhypergroup of X and T = U s(b). We claim
beH

that H = Xr. Indeed, suppose z € H. Then s(z) C | s(b) =T

beH
and so ¢ € Xr, that is, H C X7. Now we assume that x € Xr.

Then s(z) C T = | J s(b). We choose the elements by, by, - - -, b, of

beH
H such that s(z) C s(by) U--- U s(b,). We have

s

ze{ge X|s(g) Cs(br)U---Us(b)} =bysby% --- %b,
and H is a subhypergroup of X, hence z € H. Therefore, H=Xr.m

We have X anp = XaNXp, for all A, B € P*(Z). On the other
hand, we have X5 = X4 U Xpg. Let us consider the following
example.

70. Example. Let X = P(Z) and s be the identity function on
P*(Z) with s(0) = Z, |Z| > 3 and let a, b, ¢ be distinct elements of
Z. Set R = {a,b} and S = {c}. Then X = P*(R),Xs = P*(S)
and XRus*——P*(RUS) WehaveXRUS#XRUXS. n

By Corollary 63, Corollary 65 and Proposition 69, if s(X) is
a V-subsemilattice or if it is a partition of Z, then £(X)={Xr |
T e P*(Z) and X7#0}. In this case, we define a hyperoperation vV
and an operation A on £(X) such that (£(X), V,A) is a hyperlat-
tice. We assume that

XaANXe=Xann a.IldXAVXB:{XTlAUBQT}.

In the following lemmas we investigate the conditions of a hy-
perlattice.

71. Lemma. X4 € XAVXA,XaNXg=X4, XaVXp=XpVXy
and X3 AN Xp = Xanp =X AXa.

Proof. Immediate. |
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72. Lemma. (XAVXB)VXC = XAV(XBVXc) and (XA/\XB)/\
/\XC:XA/\(XB/\X(}).

Proof. The associativity of A is immediate. We verify the associa-
tivity of V. Let A, B,C € P*(Z). Then

(XAVXB)VXC = {XTIAUBQT}VX02
= U XrvXe=
AUBCT
AUBCT

= {Xy | AUBUC <V}

Similarly, we have X4V (XpV X¢) = {Xy | AUBUC C U}, hence
also V is associative. n

73. Lemma. X4 € [XaV (XA AXB)]N[(XaA(XaV Xp)], for all
A,B e P*(Z).

Proof. Let A and B be arbitrary elements of P*(Z). Then we
have,

XAV(XA/\XB) = XaVXans =
— {X;| AU(AAB)C T} =
= {Xr|ACT}

Therefore, X4 € XaV (Xa A Xg). On the other hand, X, =
=XAA(AVB)=XA/\XAUB€XA/\(XA VXB), as required. [ ]

74. Lemma. If X4 € X4V Xp, then Xg = X4 A Xp.

Proof. Let X4 € X4V Xp. Then there exists T € P*(Z) such
that X4 = Xrand AUB CT. Thus, B= BNT and so Xg =
= Xprnp = X A X7 = X4 A Xp. Therefore, Xg = X4, A Xp and
the lemma is proved. [

We summarize the above lemmas in the following theorem:
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75. Theorem. Lets : X — P*(Z) be a function such that (X, *)
is a hypergroup. Also, we assume that for all positive integer n and
the elements ay,---,a, of X, we have

ay ¥ay% --- ¥a, = {g € X | 5(g) C s(a;) U---Us(an)}.
Then (L(X),V, A) is a hyperlattice.

We now investigate the distributivity of £(X) and show that
this hyperlattice is not distributive, in general. In fact, we can
consider the following example.

76. Example. There exists a function s : X — P*(Z) such that
(X, * ) is a hypergroup which satisfies the conditions of Theorem 75,
but £(X) is not distributive. Indeed, let us assume that H is a finite
group, II.(H) = {ord(z) | z € H} and s : P(H) — P*(Il.(H))
defined by s(A) = {ord(z) | z € A} and s(@) = II(H). It is easy
to see that the function s is onto, so by Theorem 75 L(P*(H))
is a hyperlattice. Suppose, H = Z; = {e,a,a? a®}, the cyclic
group of order four, and X = P*(H). Then II.(Z;) = {1,2,4}.
Set, A ={1,2}, B ={1},C = {2,4} and D = {2}. It is clear that
XA/\(XBVX(;) = XA/\Xl'Ie(X) = X4 and (XA/\XB)V(XA/\Xc) =
= XB V XD = {XA;XHe(X)}- This shows that XA A\ (XB VX(,') 75
# (XaANXB)V (Xa A Xc). Therefore, L(P(Z,)) is a hyperlattice
which is not distributive. ]

IT) We present here some results on a special type of hyperlat-
tices, called P-hyperlattices, introduced and studied by M. Kon-
stantinidou.

Let us recall what a hyperlattice is.

77. Definition. Let H#D and V:HxH—P*(H), N\HxH—H be
such that V (a,b,c) € H?, we have:

(i) a€aVva, a=aAg;
(ii)) avb=bVa, aNb=bAg;
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(i) (avb)Ve=aV (bVe), (avVb)Ac=aA(bVc);
(iv)aelaA(aVvbd)]nlaV(aAbd);
(v) b<a<=a€aVb

Then the hyperstructure (H, V, A) is called hyperlattice.

Notice that in a hyperlattice (H, V, A) the following properties
hold, and they can be proved easily:

1) V(a,by € H2, avbCaV (aVb) (if H is a lattice, we have
the equality, whence a < a V b).

2) if a < b are elements of H and « is arbitrary in H, then

bva C(aVvVz)V(bVz) (if H is a lattice, we have the equality,
whence a <b==>aVz <bVz).

3) if a < cand b < d are elements of H, then ¢Vd C (aVb)V
(cVvd) (if H is a lattice, then we have the equality, whence (a < ¢
and b<d)=aVb<cVd).

4) if (a,b,¢,d) € H%, then aVb C (aVb)V(aAc)V (bAd) (if H is
a lattice, then we have the equality, whence (aAc)V (bAd) < aVb).

5) V(a,b) € H% we have a Ab € (aAb)V (aVDd) (if H is a
lattice, then we have the equality, whence a Ab < a V b).

Let (L,V,A) be a lattice and P C L, P # (. We define the
following hyperoperation on L:
P
V(a,b) € L?, a\/lb=aVbVP={aVbVgq|qge€ P}.
P
78. Remark. Let a € L. We have a € aVa if and only if 3¢ € P
such that ¢ < a.

P
Proof. ”<=" Let ¢ € P such that ¢ < a. Then aVa =aV P >
SaVg=a.

P
=" If a € aVa = a V P, then there is ¢ € P such that
a=aVgq, whence ¢ < a. [
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Notation. Let IL be the set
{PCL|VzxeL,3geP:q<z}.

P
79. Theorem. The hyperstructure (L,V, ) is a hyperlattice if
and only if P € I*.

Proof. <= Let P € I”. For any (a, b,c) € L?, we have:
P
(i) a € aVa (by the previous remark);
P P
(i) aVa=bVa=aVbV P;

P P P P
(iii) (aVd)Ve = aV(bVe) = {aVvbVeVvgVr | (q,7) € P?} =
=aVbVeVPVP;
(iv) Let a € L and g € P be such that ¢ < a. We have
P
a=aA(aVb)=aA(aVbVg)€aA(aVbV P)=aA(a\Vb) and
P
a=aV(aAb)=aV(aAb)Vg€eaV(aAb)VP=a\(aAb).

P
(v) Ifb<a,thena=aVq€ aVP=aVbVP = a\b. Conversely,

P
ifa€aVb=aVbV P then 3t € Psuchthata=aVbVt,
that is b < a.

P
Therefore, (L, V, A) is a hyperlattice.

P
=" Let (L, V, A) be a hyperlattice. Then Va € L, we have

P
a € aVa, therefore P € I*, according to the previous remark. m

P
80. Corollary. (L,V,A) is a hyperlattice if and only if Va € L,

P
a € aVa.

81. Proposition. Let J be an ideal of a lattice L. Then J € I-.
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Proof. Since J is an ideal of L, it follows that LAJ C 7, whence
V(a,q) € L x J, 3G € J such that aAq = G, so § < a. Hence
J eIt n

82. Remark. The converse of the previous proposition is not
true. Indeed, if L = {o,a,b} and 0 < a < b, then J = {o,b} € I*
because o € 7, but J is not an ideal of L.

P
83. Definition. The hyperlattice (L, V, A) is called P-hyperlattice.

P
84. Remark. V(a,b) € L? we have a Vb € aVb, so if a P-
hyperlattice degenerates into a lattice, this coincides with the sup-
porting lattice.

85. Remark. There are hyperlattices, where there does not exist
the supremum for all pairs of their elements. Indeed, let H =
= {a,b,c,d,z,y,2}, wherea <b<d<z<y<z,a<c<dand
bllc.

If we consider the following hyperlattice on H : V (o, 8) € H?,
a<pB,wehaveaVp={ye H|f<~v}and bVc=H —{a,b,c}.
Then the sup(b, c) does not exist. Hyperlattices of this kind cannot
be P-hyperlattices.



Chapter 5

Fuzzy sets and rough sets

Fuzzy Sets and Hyperstructures introduced by Zadeh, in
1965, and by Marty, in 1934, respectively, are now used in
the world both on the theoretical point of view and for their
many applications. The Rough Sets considered for the first
time by Shafer in 1976, have been reintroduced in the inter-
national scientific circle by Pawlak, in 1991 especially in con-
nection with Artificial Intelligence. The relations between
Rough Sets and Fuzzy Sets have been already considered by
Dubois and Prade {137], those between Fuzzy Sets and Hy-
perstructures by Corsini, Corsini-Leoreanu, Corsini-Tofan,
Ameri-Zahedi and others, those between Rough Sets and
Hyperstructures by Davvaz. More recently, M. Konstan-
tinidou and A. Kehagias have obtained interesting results
on hyperstructures and fuzzy subsets.

81. Join spaces associated
with fuzzy subsets

The first connection between fuzzy subsets and join spaces has been
established by P. Corsini. Afterwards, P. Corsini and V. Leoreanu
have obtained more results concerning this connection. We present
some of Corsini and Leoreanu results here.

161
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Let p : H — I be a function from a nonempty set H to the
closed interval I = [0,1] that is < H;p > is a fuzzy subset. Let
us define on H the hyperoperation: for all (z,y) € H? such that

m(z) < u(y),
yor = zoy = {z € H | u(z) < p(z) < pu(y)}

1. Theorem. The hypergroupoid < H;o > is a join space.

Proof. It is clear that o is associative and reproducible, that is
< H; 0> is a (clearly commutative) hypergroup. It remains to prove
that < H; o> satisfies the condition a/bNc/d # § = aodNboc # §.
Let us suppose z € a/bNc/d, that is

p(a) € [u(z), u(b)], p(c) € [u(x), p(d)].
We distinguish four cases:

L p(z) < p(d), p(z) 2 p(d).
Then we have: p(z) < p(a) < p(d), w(d) < p(c) < u(z),
from which: p(d) < ple) < p(z) < pla) < u(b), whence
(), B@)Cla(a), MA)N[1(c), 1), therefore aodMbocD.

2. u(z) > p(®), i(x) < pld).
Then we have: p(b) < pu(a) < p(z), plx) < ple) < p(d),
whence p(b) < p(a) < p(z) < p(e) < p(d), from which
[u(a), u()]Clu(b), u(c)N[u(a), 4(d)], therefore aodNboc#D.

3. p(z) < p(b), u(d) = p(z). Then p(a) < p(b), p(c) < p(d).
We can distinguish two cases:

(i) p(b) < p(d);

we have: p(a) < p(b) < p(d), therefore aod N boc # .
(ii) p(b) = p(d);

then we have: u(c) < u(d) < u(b), whence bocNaod # 0.

4. p(z) = p(d), u(z) = p(d).
From which p(b) < p(a), u(d) < p(c).
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We can distinguish two cases:

(1) p(a) < p(c); then u(b) < p(a) < p(c),
therefore boc N aod # .

(i) p(a) > p(c); then p(d) < p(c) < p(a),
therefore aod M boc # §. [ ]

2. Theorem.
1) We haveVn € IN*, V(21,22,...,2,) € H"

L= ful Aute) <t < V s}

i=1

Moreover, if R is the equivalence relation defined on H:
TRy <= p(z) = p(y),
we have
2) R C B

3) H/R is a hypergroup with respect to the hyperoperation
zoy={Z| z € zoy}.

Proof. 1) It follows inductively from the definition. Indeed we
have

n n—1
H 2 = H Zi0%p = U voz, =
i=1 1

i=1 n—
ve Hz,-
i=1

= U {1 #) A pza) < p0) < p@) V p(z)})-

n—
ve HZ-;
i=1

Let us suppose by induction

Ti:! 2z = {5 | Z\IH(Z;') <p(d) < zu(zi)} _
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Then we obtain

[Mz= U {n() A p(z2) < p(N) < p(v) V p(z,)} =

Nusuors Ve
= {31 Ante) <u < fi)}-

2) Since < H;o > is a join space, it is a hypergroup, whence
V(a,b) € H?, there is ¢ € H such that a € boq. So, if aRa’, it
follows o’ € p~'u(a) C bog then R(a) C boq and therefore R C 3.

3) R is regular. Indeed, aRa’, bRY implies aob = a’ob’. Then
by Theorem 29 [437], < H/R;3 > is a hypergroup. [ ]

In the following, we shall give a necessary and sufficient condi-
tion for the isomorphism of two join spaces, associated with fuzzy
subsets, on the same universe.

We shall find the number of isomorphism classes of such join
spaces, in the case of a finite universe.

To different fuzzy subsets p14, up, isomorphic join spaces can
correspond, for instance, if pj is the complement of py, then
< H;o04 > and < H;o04 > are isomorphic.

First, we shall find the number of isomorphism classes of join
spaces associated with fuzzy subsets on a universe H such that

Let us set H = I(n) = {1,2,...,n}, let P be the set of fuzzy
subsets on H and let py € P(H).

Let us define on H the equivalence relation

u~v if and only if pa(u) = pa(v).
Let us set H' = H/~4, |H'| = s, and let us order H’ such that

IT) V(h,k) € H?, h < k if and only if pa(h) < pa(k).



APPLICATIONS OF HYPERSTRUCTURE THEORY 165

Let H' = {hy, hy,...,h;} and let A(u4) be the ordered partition of
n into s parts defined as follows:

) V(hy,....hs) € H?, Mpa) = (a1,as, ...,as) if and only if Vi,
a; = !p;l(,u,;(h,-) and V (z,7) € I(s) x I(s) such that ¢ # j,
i <j=h; <h;.

Clearly, we have Zai =mn,and Vi, a; > 1.

i=1

IV) Let (a3, as,-..,as) be an ordered partition of n into s parts.
Let us set ¥(as,as,...,as) = (b1,...,bs) where Vi : 1 < i < s,
b; = as_j41-

We shall prove the following

3. Theorem. If pa, pup are fuzzy subsets on a finite universe H,
then the join spaces < H;o04 > and < H;op > are isomorphic if
and only if either A(pa) = Mug) or AM(ug) = ¥(A(ua)).

Proof. We shall prove before the implication ”<=".
Let us suppose A(ua) = AMps) = (a,..,a;). We can set
S S

H = \UH = |JH], where Vj € I(s), H; = pz'(pa(h;)) and
=1 =1

Hj = pg'(us(hy))-
Let Hj = {.’L‘l’j, T2,5, ...,Il,'a].,j}, H]/ = {11,‘,1’]-,.’172’]', "’7x:1]-,j}'
Let us order H in the following manner

V(5,5) € I(s) x I(s), V (I, ) € I(a;) x I(a;)
Thj < Twj <= h<h.
Ifj#75, V(hF),
Thj < Tpj J < j’.

Moreover, V (i,7) € I(s)xI(s) we shall denote ¢V j = max{3,j},
iAj =min{i, j}. Then V(4,5) € I(s)xI(s), V(h,k) € I(a;)xI(a;),
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by I) we have
Thioazk; = U Hy
INJST<iV]
ZhiOB Tk, = U H.
INFST<iV)
Therefore, if f : < H;04 > — < H;o0pg > is the function defined
as follows: V (u,t) € I(a;)xI(s), f(zuz) = z,,,; then we have

f(znioazr;) = 7308 % ; = f(hs) 0B f(k;),

where < H;o04 > and < H'og > are isomorphic hypergroups.
Let us suppose now A(ug) = ¥(A(u4)).
Let usset H= | ) H; where Vj € I(s), H; = {z1, vy Taz5}
1<5<s
and H; = |J Hj, where j/ = ¥(j) = s — j+ 1, and Hj =
1<5'<s
= {21y, - Ty, 5} With @}y = a;.

Let us define V(h,j) € I(a;)xI(s), f(zn;) = z}, ;. We have

f(zrioazy;) = f( U Hr) = U Hyyy =

iNj<r<ivi Y(ivi)<T(r)<¥(ing)

= U H = 5’3;1,1" °B x;c,j’ = f(zn;) oB F(zr5),
PAGI<H <iIV

whence f is an isomorphism.

Let us prove now the implication ”=—=>".

Let p: H — I(s) be the function defined as follows: Vz € H,
p(x) = j where j is that unique element of I(s), such that 3k €
€ I(a;) so that x = xy; € H;. Analogously we define p/ : H — I(s')
where s’ = |H/~p|.

Let f:< H:04 >— < H;op > be the isomorphism of these
two join spaces. Then V (z,y) € H?, we have

f(zosy) = f( U Hj) = U f(H;).

p(z)Ap(Y)<i<p(z)Vp(y) () Ap(y)<ji<p(z)Vp(y)



APPLICATIONS OF HYPERSTRUCTURE THEORY 167

But we also have, if we set pp'pp(zt,) = H.

flxoay) = f(z)on f(y) = U H..
PN @<y (F@)Ve (F@)

For V (u,v) € NxN, we shall denote I(u,v) the set
{zeN|JuArv<z<uVwv}.
Let us remark now
1) m#r = H, NH/, =0,

°AY,

2) if {z,y} C H, we have zoqy = H = zoyz = y
= f(H;) =

whence f(z)op f(y) = f(zoay) = f(xoax)
:f(x)OBf(l'),

3) by 1) and 2), there is only one t = p/(f(z)) such that f(H;) =
= f(z) op f(y) = H;.

‘We shall set t = ¢(j), whence f(H;) = H,, .

So we have ¢ : I(p(z),p(y)) — I1(p'(f(2)),P'(f(y))) and we
have clearly Vz € H, p(p(z)) = p'(f(z)).

We shall prove that ¢ is a bijection.

 is clearly an one-to-one function.

Indeed, if there were j, j2 such that j; # j and p(51) = ¢(j2),
it follows f(Hj;,) = f(H;,) from which Yk : k € I(a;,), h € I(aj;,)
exists such that f(xy; )=f(z ;) which is absurd since H;, NH;,=0,
and f is one-to-one function.

 is also onto.

Indeed, since

f(@rioaTh;) = f(zxs) o f(Tn;) = U H;
€l (o' (f(zx,))P (f(zr,5)))

and p'(f(zx,s)) = 0(3), p'(f(zns)) = ©(4)-
We have that V€ I(p(3), p(5)), 3t€1(%,7) such that p(t)=r.
Therefore, ¢ is a bijection from the interval I(z,j) to the in-

terval (I(p(%),¢(5)). Particularly ¢ : I(1,s) — (I(¢(1), p(s)). On
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the other hand, as f is a bijection, it follows Vy € H, 3(k,j) €
€ I(a;)xI(s) such that f(zx;) =y, whence

fH)=H= | fH)= U H,;,= U H.

JEI(s) J€I(s) rel(p(1),p(s))

Moreover, clearly ¢ is a function from I(s) to I(s’) and since
§' =|H/~pg| and f is an isomorphism, we have

|f(H)/~p| = |H/~p| = |[p'(H)| = |p'(f(H))| = lp(p(H))],

whence s' = |H/~p| = |p(p(H))| = |p(H)| = s.
Moreover, Vj € I(s), we have

Vi € I(s), a; = |H;| = |f(H;)| = |Hyi)| = s,
On the other side ,Vk € I(a;), Vh € I(as), we have

f(H) = f(xk,l OA-Th,s) = U H{ = H.
' tel(l,s)

Therefore, the interval I{y(1),¢(s)) coincides with the inter-
val I(1, s)=I(s). It follows {¢(1),¢(s))}={1, s}. Hence I(2,s—1)=
= 1(1,5)—{1,s} = I(p(1),9(s)) — {p(1),0(s)} = @(I(s)) —
—{0(1), 0(s)} = (1(2,5-1)) = I((2), p(s—1))) from I(2,s—1) =
= I(p(2), p(s — 1))-

One obtains analogously {¢(2), ¢(s — 1)} = {2,s — 1}.

In general, we have

(e) Vk, o(k) € {k,s—k+1}.
Let V be the set of the permutations of I(s,) which satisfy (g).

n) We shall prove now that either ¢ is the identity function I of
I(s) or it is the permutation ¥ of I(s) defined:

VkeI(s), U(k) =s—k+1.
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If s < 3wehave V = {I}(s), ¥}. If s > 3 and one supposes (1) =1,
p2) = ¥(2) = s—2+1 = s—1, it follows p(I(1,2)) =
= 1(p(1), @(2)) = I(1,5— 1), whence 2 = |(I(1,2)| = [p(I(1,2))] #
# |I(1,s — 1)] > 3, absurd.

Analogously if ¢(1) = s, then ¢(2) = 2.

Therefore, either yj(2) = I1(2) or Yr2) = Yy(z).

Let k be in I(s) and let us suppose

o1y = Iy, o(k+1)=¥(k+1).

Then we have k+1 = |I(k + 1)| = |o(I(k + 1))| = |[I(p(1), p(k))|+

+I(p(k), ¥(k+1))| -1 = k+ |I(k,s—k)| -1 = k+ s — 2k,

from which s = 2k + 1, hence p(k +1) = s—(k+1)+1 =

=2k+1—-k—1+1=k+1, from which @rx41) = Iyg+41)-
Analogously, if one supposes

(pl(k) - \Ilf(k)7 (,O(k+ 1) =k + 17

then we have k+1 = |p(I(k + 1))| = |o(Ix)|+|p(I(k, s — k))| -1 =
=k+s—sk+1—1 whence s —2k =1 that is s = 2k + 1. Then
U(k+1l)=s—(k+1)+1=2k+1-k—-1+1=k+1=1I(k+1)
from which o141y = Vi1

Therefore, by induction, 7) is proved, hence the implication
= follows and consequently the theorem is proved. u

4. Theorem. Let H be I(n) and let J,(n) be the set of isomor-
phism classes of the join spaces < H;o4 > associated with the fuzzy
subsets pa on the universe H. Then

if n=2k+1, |J(n)]=2F12F+1)
if n=2k, |Ju(n)] = 2k-1(2F-1 4 1).

To calculate |J,(n)| by Theorem 3, it is enough to remember
that if (p.o.)(n) is the set of the ordered partitions of n, we have
|(p-0.)] = 2"~ (see [448]), and to find those p € (p.0.)(n) such that
¥(p) =p.
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An ordered partition (a,as, ...,as) of the integer n is called
symmetrical if ¥(ay, ...,as) = (a1, ..., as). Let us denote (s.o.p.)(n),
the set of the symmetrical ordered partitions of n. To calculate the
number [(s.0.p.)(n)|, we shall distinguish the case n is odd from
that it is even.

Let us suppose n = 2k + 1, and X € (s.0.p.)(n). Then either

= (2k+1) or 1t is of the type (i1,%2, ...,%s, 2t + 1,85, %51, -.., %1)
where te{0,1,...,k—1},se{k—t,k—t—1,..,1}, and we have

221’, +2t+ 1 =2k +1, whence Zir =k—t.
r=1 r=1
For any t, we have |(s.0.p.)(k — t)| = 2¥7t~1 (see [448]).
k=1

It follows |(s.0.p.)(n)| = sz—t—l 11
t=0
Let us set k —t — 1 = v, then

k-1 0
ZZk-—t—l — Z W — 2(k—1)+1 -1

t=0 v=k-—1

from which |(s.0.p.)(2k + 1)| = 2.
Let us suppose now n=2k. Then if X € (s.0.p.)(n), either
X € (2k) or it is of the type: (i, ...,1s,2t,14s,...,11), Where

te{0,1,..,k—1},se{k—t,k—t—1,..,1} and D i; =k —t. We

=1
have |(s.0.p.)(k — t)| = 2¥7*~1, from which
k-1
|(s.0.p.)(2k)| = Y 2F 1 41 =2
=0

Now we can conclude.
Ifn=2k+1, then

1
IJH(n) — 2k + (211,—1 _ 2k)§ — 2k + 22k-—1 _ 2k—-1 — 2k-—](2k _ 1).
If n = 2k, then
1
[Ju(n)] =28 + (251 — )z =212+ 2 - ) = 2@ ).
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Now, it is interesting to study how the isomorphism problem
of two join spaces associated with fuzzy subsets on a finite universe,
can be generalized for the case of an arbitrary universe.

Before see it, let us make some notations.

Let p4 be a fuzzy subset on an arbitrary universe H and let
us define the equivalence relation

u~av if and only if pa(u) = pa(v).

Now, if 4 and pp are two fuzzy subsets on H, let us set
H/~s={H;|i€ 1} and H/~p ={H} | ¢ € I'}, where

Vie I, Hi = {:z:k,,- I ke K,}, IKII = IH,' = Qq; and
Vi el, Hy={zl,|K €Ki}; |Kil=|Hy=dy

We order I (I’, respectively) such that: i < j <= (V(z,y) €

€ HixHj, pa(z) < pay) (¢ < j’ <= (V(¢,y) € HyxH},

us(z') < pe(y')), respectively) and we order also H/~4 (H /~B)

such that: H; < H; <= i < j (H} < Hj <= 1’ < j', respectively).
We have the followmg

5. Theorem. If pa,pup are fuzzy subsets on a universe H, then
the join spaces < H;o04 > and < H;op > are isomorphic if and
only if a strict monotone and bijective function ¢ : I — I' exists,

such that Vi € I, a; = ag,;,.

Proof. First, let us prove the implication 7 ="

We denote by f the isomorphism between (H,04) and (H, op).

Similarly, with the finite case, we shall consider p : H — I,
p(z) =3, (0 : H—- I, p(z) =j'), where j (j/, respectively) is the

unique element of [ (I’ respectively) such that z € H; (z € H},

respectively).

For {z,y} C H;, we have 1042 = zo,y = yo,y = H;, so
f(x)op f(z) = f(zoay) = f(y)op f(y), thatis Hy .y = f(H:) =

Hp,(f(y,)), whence ' (f(z)) = p'(f(y)), because for {r,m} C I,

Ty # 19, H], =0.
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Now, we can define the function ¢ : I — I’ in this manner: for
i=p(z), z € H, (i) =p(f(z))

Let us remark that ¢ is an one-to-one function. For this, let us
suppose 3{j1,J2} C I, j1 # J2, such that ¢(j1) = ¢(J2). It follows
f(H;,) = f(Hj,), which is absurd since H; N H;, = 0 and f is
one-to-one.

 is also onto. Indeed, since f(H) = H, we have:

H=|JH, =f(UHi) =UfH)=UH,,, = U H,
ier i€l i€l icl Velmyp
so I' =Imey.

Therefore, ¢ is a bijection, hence |I| = |I’|.

f is an isomorphism, so Vi € I, | f(H;)| = |H;|, that is Vi € I,
Gy = |Hiyy| = |Hil = @

Let us prove now the strict monotony of . We shall use the
following notations: uAw=min{u, v}; uVv=max{u,v};V(3,5)€I?,
[ing,evyl={tel |inj <t <iVj}andV(¢,5)el? [N, VVj]=
={tl€IIIZlA]IStISsz]/}

Let (i,7) € I?, i < j and let us consider ¢ € H; and y € H.
From f(zoay) = f(z)op f(y) it follows

(us

!
kr

i<r<j ) P(DNp(5) <kZp()Ve(5)
whence

U H:a(r) = U I/c;

i<r<j P(DAp(G)<kLp(i)Ve(d)
therefore, {g(r) | i < < j} = {k € I | 9(i) Ap(j) < k <
< (i) Vp(j)}, that is:
() Y(i,5) € I*, i <, pli, 1)) = lp(d) A @(5), p(5) V ¢(5)]-
We have ¢(7) # ¢(j), since ¢ < j and ¢ is a bijection; so, there

are two possibilities: (i) < ¢(j) or p(j) < ¢(1).

Case A. For ¢(i) < ¢(j), ¢ is strict increasing on [z, j]. Indeed, let
us observe that:
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As. If [i, 5] = {3, j}, that is obviously;

Ay. If there exists r € I, such that 7 < r < 3, then
e(i) = (i) A p(F) < @(r) < (i) V o(j) = ©(j), since (*).

As. If there exists (r, s) € I?, such that i < s < r < j, we obtain,
using (*), that: ¢([i,7]) = [p(d) A p(r), (i) V o(r)]; so, using
Ay, (i) = p(a) A plr) < 9ls) < 98) ¥ 0lr) = () < 0(3).

Case B. For ¢(j) < ¢(i), we can prove that ¢ is strict decreasing
in a similar manner.

Moreover, we shall prove that for V (¢, 7) € I2, such that i < j,
we have two situations:

1°. If (i) < p(j), then ¢ is strict increasing on I;
2°. If o(3) < ¢(2), then ¢ is strict decreasing on 1.

Indeed, in the first situation, we have already seen that ¢ is
strict increasing on [z, j]. Let £ be an arbitrary element of I, such
that j < £. So, p(j) # »(£); if () < p(j), then p(£) < (7).

Indeed, ¢(€) ¢ [¢(2), p(4)] = ©([3, 7]), since ¢ is one-to-one.

But, from ¢(€) < ¢(3), we obtain that ¢ is strict decreasing on
[2, €], as it follows from the case B. So that, ¢ is strict decreasing on
[¢, 5], too, which is not true. Therefore, V2 € I, j < £, () < (),
that is ¢ is strict increasing on [4,£], V£ > j.

Similarly, we can prove that ¢ is strict increasing on [¢, i, for
every £ € I, ¢ < i. Therefore, ¢ is strict increasing on 1.

Analogously, it follows 2°.

"«<=" For Vi € I, we have |K;| = |H;| = a; = ) = |H<:,(i)
= IK;(I.) , S0 we can suppose K; = K_,.

Let us define f : (H,04) — (H,op) in this manner: for Vi € I,
Vk € Ki, f(IL'I,,') = x;c,ga(i)’

Hence, f is a bijection.

Let us verify now that f is a morphism.
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For V (i,j) € I? and V (z,y) € H;xH;, 3k € K;, 3h € K;, such
that x = z,; and y = y, ;. We have:

f(x) o f(¥)=F (k) 0B f(Unj)=Tk p(3) OB Yh o) = U Hy;
P(D)Ap(5)<t<e(i)Ve(s)

f($°Ay)=f( U Hk)= U Hyw-

IAnj<k<iVj iNj<k<iVj

If ¢ is strict increasing, then
p(i A j) = (1) Ap(f) and (2 V j) = ¢(3) V ¢(j);
 is also a bijection, so

f(zoay) = U Higy = U Hy,

(NG <p(k)<p(iV7) P(DAP(F)<s<p (i) Ve(i)
whence f(zos9y) = f(z)op f(y).

If ¢ is strict decreasing, then p(iAj) = p(2)Ve(5) and p(iVj) =
= (1) Ap(J); ¢ is also a bijection, so

f(zoay) = U o) = U Hy,

(V) <p(k)<p(ing) P(DAP(F)<s<p(i)Ve(d)

whence f(zoay) = f(z)os f(y)-
Therefore, we have obtained that f is a morphism and now the

theorem is proved. |

Finally, we give other examples of hyperstructures associated
with fuzzy subsets.
Let p4 be a fuzzy subset on a universe H.

6. Example. Let us define the hyperoperation in the following
manner:

y®az=2Q4y = {2 € H| pa(z) < pa(z) < pa(y)}u
U{z € H | pa(z) <1 - pa(2) < pa(®)},
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where we have supposed p4(z) < pa(y).

< H,® > is not a join space, because from a/bNc/d # @ it
results dz, such that e € b@ z and c€ d QR x.

If, for instance,

Ba(a) =1— pa(a) € [na(d) A pa(z), pa(d) V pa(z)] and
pa(x) € [pa(d) A pa(z), pa(d) V pa(z))]

and if pa(z) < pa(d) and pa(c) < pa(d), a possible situation is the
next:

pa(z) < Ba(a) < pa(c) < pa(d) < pa(a) < pa(d), whence:
L. [pa(c), pa(®)N[pa(a), pa(d)] can be void (for pa(b) # pa(a));

2. pa(d) < pa(a) > fa(c) = fa(b),
so [2a(b), Ba(c)] N [a(a), pa(d)] can be void,

3. pa(c) = pa(d) = pala) > fa(d),
so [a(b), ia(c)] N [Ba(a), Ba(d)] can be void;

4 1a() > Bale) > Ba(a) > Fald),
so [a(d), a(a)] N [na(d), pa(c)] can be void.

So that,

a®dNb®c=([pala) A pa(d), pa(a) vV pa(d)ju
URa(a) A a(d), Ra(a) V Ra(d)])N

N([a(®) A palc), pa(d) V pa(e)lu
U(2a(b) A Ba(c), 1a(b) V fia(c)])

can be void.

7. Example. Let us consider

r04y ={z € H| pa(2) € {pa(x), pa(®), Ba(z), Bay)}}.
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We have

V(z,y,2) € H? (z04y)Daz=1204(y0a2) =
= {a €EH I /‘l‘A(a) € {HA(:L'L “A(y)7“A(z)vﬁA($)’ﬁA(y)7 ﬁA(z)}}

and V(z,y) € H?, x€x0,ysoz0,H=HO,z = H.
Therefore, (H,04) is a hypergroup, with wy = H. Moreover,
(H,O,) is regular and reversible. (H,O,) is a join space, too.
Let z € a/bNc/d,

pa(a) € {pa®), pa(x), Ba(b), ka(z)}
/‘A(C) € {/1'/1(d)’uA(x)’ﬁA(d)vﬁA(x)}}'

We can find a € H, such that
pa(e) € {pala), pa(d), Ba(a), Ba(d)}N{ra(b), pa(c), Ba(b), Ba(c)}-

If pa(a) is pa(b) or pa(b}, we choose a = b;
If pa(c) is pa(d) or a(d), we choose a = d;
If {pa(a), pa(c)} C {ra(z), Ga(z)}, then we choose a = z.
So, (H,O,) is a join space.
Let us consider on H the equivalence relation:

g~y <= pa(y) € {pal@),1 - pa(o)}

ForV(z,y) € H?, z0,y=zUg =y, t04y = 7.

Let us consider now ¢; and ¢» be two fuzzy subsets on H.

Let H/my, = {H), |t € I} and H/~,, = {H’,_, | ¥ eI}

So, VX €10,1], Hy, ={z € H| qi(z) = X or q1(z) =1 — \;}
and VX, € [0,1], Hy,, ={z € H| g(z) =X, or g2(z) =1 — N, }.

Let us denote af* = |H),| and o’ = ’H’{’l.
8. Proposition. For q; and q» fuzzy subsets on a universe H, we

have (H,Oy,) — (H,O,,) if and only if |I| = |I'| and {aP }icr =
= {a7 }ver.
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Proof. "=>" Let us denote the isomorphism by f. For = € H, we
have f(zO,, 7) = f(z) O, f(z), that is f(Z) = f(z).

If 7] = af (z € H),), then | f(@)| = af2.

But f(z) = {y € H | a2(y) = ¢2(f(2))) = ’\;6 or gx(y) = 1_)\2{,}
and ’T(?)l = agg. So, afy = afz.

Let us also prove that if 49 # jo, then 4 = 3.

Indeed, if we suppose (g, jo) € I?, ip # jo such that iy = 3,
that is 3z € H), and 3y € H),, for which {f(z), f(y)} C H) ,

*o

then we have
H;‘:, = f(z) O, fy)=f(= Oy y) =
= f(Hx, U Hy, ) = f(Hx,) U f(Hy,),

whence, f(H),) = f(Z) = f(z) = HS\;, = f(Hx,) U f(H),,), con-
tradiction, since f is an isomorphism. °

So, |I| < |I']. Now, if we do the same reasoning for f~!, we
obtain |I'| < |I|, hence |I| = |I’| and so we can consider I = I'.

?4=" First, let us denote a; = a' = aP, for every i € I
and let us define the bijection f : (H,O,) — (H,0,,), such that
Vi€, f(Hy,) = Hj.

Let {x;;,zv;} C Hy;. we have

f(@i;Oqy zi05) = f(Zig) = f(Hy;) = Hy, = f(2i5) Og, f(zi5)-
Let us consider now z;; € Hy, and x4, € Hy,, where j # k.

f(@i 00 Tex) = f(Tij UZex) = f(Hy;) U (Hy,) =
= f(Hy) U f(Hy,) = ,’\; U H,'\; = f(zi;) Og, f(zek),

whence V (z,y) € H?, f(zoy) = f(z)of(y). -

Now, let (1, <) be a totally ordered set.
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9. Theorem. Let m = {A;}ic1 be a partition of a set H. Let us
define

8) V(z,y)€A:, zoy=A;, if i<j, t€A;, y€A;, zoy= U A..

1<s<j
Then < H; ° > s a hypergroup.
From Theorem 9 we obtain

10. Theorem. For every function p: H — I such thatVz € H,
piu(z) = Ays), the hypergroupoid defined

V(z,y) € H?, zoy={z]|pu(z) Apn(y) < pz) < pz) v p()}
s a join space which coincides with < H;o >.

Soif I = p(H) C [0,1], < H;o > is the join space associated
with the fuzzy set < H;p >.

11. Definition. We call < H; o > a I-pr—-hypergroup, if a partition
7 = {A;}ier of H exists, which satisfies (9).

12. Corollary. A hypergroup < H;o > is the join space associated
with a fuzzy set if and only if it is an I-pr-hypergroup with
Icio1].

Now, we consider the following generalization:
Let H be a nonempty set, (L, V,A) a lattice and p: H — L.
‘We define on H the following hyperoperation:

V(z,y) € H?, axy={a| u(z) A p(y) < ula) < p(a) Vv uly)}-
This hyperoperation has been studied by I. Tofan and A.C. Volf.

13. Theorem. If u(L) is a distributive sublattice of (L,V, A), then
(H, %) is a commutative hypergroup.
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Proof. First of all, we shall verify the associativity law. We shall
check that

V(z,y,2) € H3,
2% (3 % 2)={a € Hlu(z) A ply) A (2)<p(@)<p(a) V () V ()}
Let u € z * (y* z). Then there is v € y* z, such that u € z*v.
We have p(y) Ap(z) < p(v) < p(y)Vp(z) and pz) Ap(v) < plu) <
< p(z) vV p(v). Hence p(z) Ap(y) Ap(z) < p(u) < p(z)Vuy)Vva(z).
Now, let us consider a € H, such that
w(@) A p(y) A u(z) < pla) < p(z) vV p(y) v p(z).

There exists b € p~'[(u(y) A p(2)) V (u(y) A p(a)) V (1(2) A p(a))),
since (L) is a sublattice of L. We have pu(y) A p(z) < p(b) <
< p(y) V p(z), whence b € y * z. On the other hand, we have
(@) Ap(d)=p(z)A[(1(¥)A(2))V (1(y) Anla))V (u(z) An(a))]=
=(p(@)A(y) A(2))V (@) A(y) A(@))V (@) A(z) Ap(a))=
=(u(z)Auy)Au(a@)V(p(z)An(z)Au(a)) < p(a) and
pla)=p(a)A(p(z)Vu(y)Vu(2))=
=((a)Ap())V (r(@)Au())V (u(a)Apu(z)) <
< p(@)V(r(a)An(y))V(u(a)Au(z)) <
< w(@)V[(y)Au(2))V (@) Au(y))V (w(@) Au(2))|=p(x) V(D).
Therefore, p(z) A p(d) < pla) < p(z) V u(b), that is
acxxbCz*(y=*z).
Thus,
zx(y*z) = {a € H | p(z)Au(y)Ap(z) < pla) < pz)Vu(y)Vu(z)}-

Similarly, it follows that

(zry)*z = {a € H | p(z)Ap(y)Au(z) < pla) < p(z)Vaey)Vu(z)}-

Hence V (z,y, 2) € H3, z%(y*z) = (z*y)*z. Moreover, V (z, y) € H?,
wehave r € xxyand xxy = y*z, whence H = H+x =z x H.
Therefore, (H, ) is a commutative hypergroup. (]
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14. Proposition. Let (L,V,A) be a lattice with final element,
denoted by 1. If u(L) is a sublattice of L, then there is u € H, such
that:

(i) zrxu=yrxu=c*xT=y*y;

(ii) V(z,y) € H?, 3(m, M) € H? such that ) t*u= M*u and
te€xxy

] t*u=mx*u.
TEL*udY

Proof. (i) Let u € p~}({1}). We have z xu = {t | u(z) < p(t)}.
Since y € y*u = x *u, it follows u(z) < p(y). Similarly, we obtain
() < p(z), whence zxz =y xy = {t | p(z) = p(t) = p(y)}.

(i) Let m € p~*(u(z) A p(y)) and M € p~*(u(z) V p(y)). For
any t € H, we have the equivalence relations

tezxunNy*xu < p(z) < p(t) and
w(y) < p(t) <= p(@) vV uly) < p(t) <= p(M) < p(t).

Hence, zxuNy*xu = M xu.
Notice that if t € z *y then p(t) < p(z) VvV u(y) = p(M) so

Mxu Ctxu. Then M xu C ﬂ txu CzxuNy*u = M *u (since
tE€xxy

TE€x*ydy), whence M xu= [)t*u.
tex*y
On the other hand, notice that

TEM*UDY, SO ﬂ txu Cm*u.
TEtxudYy

We also have z € t*u >y = u(t) < p(z) A puy) = u(m) =

metxu— m+uCtxuandsomx=uC ﬂ t * u, whence it
TEL+xUDY

follows the equality. [

15. Remark. Notice that the hypergroup (H, *) satisfies the fol-
lowing properties for all (z,y) € H? :
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l. zexxy;
2. TxY=Y*I;

3. zx(zxy)=z*xy=(zxz)*xy=(T*x)*(y*y) = (T*y) *y.

Now, we consider a hyperstructure (H, ) which satisfies the
conditions 1, 2, 3 of the above remark and (i), (ii) of the above
proposition.

We shall construct a lattice L and a map p : H — L, such that
7%” is exactly the hyperstructure induced by u, that is

V(z,y) € H?, zxy={t|u(z) Ap(y) < pt) < pz) v py)}-
Let us define on H the following equivalence relation:
T~YEST*T=Y*y

and let L be the quotient set H/~.
Let us define the following relation:

<y y*xyCrxu.

We shall verify that ”<” is an order on L. Indeed, first of all, notice
that 7<” is well-defined:

fZ=2, =1, and <y, then

Y1*¥Y1 =Y*YC T*kU=T*T*U=T1 *T1 ¥U =T *U.

Moreover, we have yxy Cxxu <= y*xu C z * u.
Indeed, if y*y C z*u, then yxu = (y*y)*u C (z*u)*u = r*u.
On the other hand, if y*u Cr*u, theny*y Cy*xu C r*u.
Now, let us verify the antisymmetry. If £ < § and § < Z, then
zr €y*uandy € r+u, whence z *u C (y*u) *u = y * u and
similarly, we obtain y*u C x *uso & = 9.
In a similar way, the reflexivity and transitivity can be verified.
Therefore (L, <) is an order set. For any (%,9) € L?, we have
m = inf(Z,9) and M = sup(Z,9). Indeed, we have m < % and
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7 < §; moreover, if { < # and { < ¢, then {r,y} C t*u and by (ii)
it follows m * u C t * u, so 7 < . Therefore, 1 = inf(%, ).

On the other hand, & < M and 4 < M moreover, if £ < 2
and § < Zthen zxu Cr*xuNy*xu =M *xu, so M < 3. Thus
M = sup(z, §).

Notice that the greatest element of L is a.

Let us consider the canonical projection

p:H— H/~ =L, p(x)=1i.
In the above conditions, it follows the following:
16. Theorem. For any (z,y) € H?, we have

zxy={teH|px)Apuy) < pt) < p@)Vuy)}

Proof. Let m and M be the elements which appear in (ii). We
have

w(z) A p(y) = p(m) and p(z) V py) = p(M).

We shall verify the equivalence relation:
texxy<—= M*xuCtxuC m=*u.

"==>: We have £ € m*u, y € m*u and z*y C m*u, so we obtain
z+xyxu C (Mm*u)*u=mx*u, whence t xu C m * u. By (ii) it
follows that M xu C t * u.

Vé—: Wehave txu C mx*u = ﬂ sxu= ﬂ 8 * U, SO

TES*UDY zxyCs*u

t € t*xu C z *y. Therefore

tex*ry<= MxruCtxuCmxu<> p(m) < p(t) < p(M).
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§2. Direct limit and inverse limit of join
spaces associated with fuzzy subsets

In the first part of this paragraph, the direct limit of a direct family
of join spaces is studied; in particular, join spaces associated with
fuzzy subsets are considered.

The second part of the paragraph is dedicated to the study
of the inverse limit of an inverse family of hypergroups. It is
again analysed the case of join spaces associated with fuzzy subsets.
These results have been by obtained by V. Leoreanu.

I). In [322], G. Romeo introduced the notion of the direct limit
of a direct family of semihypergroups. First, let us recall some
definitions:

17. Definition. We say that (see [447]) a family {(H;, ®;) }icr of
join spaces is a direct family if:

1) (1, <) is a directed partially ordered set;
2) V(3,7) € I?, we have i # j < H; N H; = {;
3) V(3,7) € I?, i < j, there is a homomorphism ¢;; : H; — H;,

such that @;x 0 @;; = @i, if © < j < k and y;; is the identity
mapping for all 2 € I.

Let H = U;crH;. Let us define, as in [322], on H the following
equivalence relation:

x ~ y if and only if the following implication is satisfied:

(z,y) € Hix Hj = thereiske€I; k>1i, k> j,
such that @;r(z) = @jr(y).

If z; € H; and ¢ < j, we denote y;;(x;) by ;. We also denote by Z
the equivalence class of z and by H the set of equivalence classes.
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H is a hypergroup, respect to the following hyperoperation:

f*y—Z{ZIHzGI, BIE{GIEQH,’, HyiegjﬂHi,
dz; € zN H;, such that z; € z; ®; y;}

(see [322]).

18. Proposition. If {(H;, ®;)}icr is a direct family of semihyper-
groups, such that Vi € I, 3k € I, i < k, for which (Hy,®z) is a
join space, then (H,*) is a join space.

Proof. We only need to check the implication (see Theorem 4,
[322)):

V(z,5,20) €H, Z/§NZ/D#AD=>Z+DNG*Z#0

From Z/§Nz/w # O it follows that there is 4 € H, such that T € §*u
and Z € W * 1; so, there is (i, 7) € I2, for which z; € y; ®; u; and
zj € w; ®; u;. Since I is directed partially ordered, it follows that
3k € I, such that 7 < k and j < k. Moreover, we can suppose that
(Hy, ®x) is a join space, by the hypothesis. So, we have:

vie(xi) = 2k € Pir(Ys) Ok Lir(U;) = Yr Ok uk

and similarly, zx € wy ® ug, whence ux € zx/yx N zx/wy and it
follows that z; ®x wr Ny Rk 2 # B, because (Hi, ®%) is a join
space.

Hence, T wN§*z # 0. »

We shall consider now F = {(H;, ;) }ier a family of fuzzy
subsets.

In §2, it is introduced a join space associated with a fuzzy
subset, in the following manner: V(z;,y;) € H2, we have:

z;0;y; = {2 € H; | min{pi(z:), pa(ys)} < pal2i) <
< max{pi(z;), pi(v:) }}-
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19. Definition. Let (H,p) and (H', i’) be fuzzy sets. The func-
tion f:H—H' is called a f.s. homomorphism if

V(z,y) € H?, such that u(z) < u(y), we have p/(f(2)) < ¢/(f(y))
and if u(z) = p(y), then p'(f(z)) = 1'(f(y)).

20. Definition. Let F = {(Hj, ;) }ies be a family of fuzzy subsets.
We say that F is a direct family of fuzzy subsets if:

1) (I,<) is a directed partially ordered set;
2) V(i,7) € I?, we have i # j <= H; N H; # 0,

3) V(i,7) € I?, i<j, there is a f.s. homomorphism ¢;; : H;—Hj,
such that: if ¢+ < 7 < k, we have pji 0 ¢;; = i and ;; is the
identity mapping for all 7 € I.

Let {(H;, p:) }ier be a direct family of fuzzy subsets and let us
consider now ji:H—[0, 1], such that the following condition holds:
V(z,9) € H, i(Z) < B(@) if and only if ¥ € I, 3o; € N H;,
Jy; € g N H;, such that p;(z;) < pi(y:)-

21. Proposition. The following equivalence relation holds:

[(3i eI, 3z; € zN H;, 3y; € gN H;, such that pi(z;) < ps(ys))
<= [Vj € I, Vz; € ZN Hj, Vy; € gNH; : pi(z;) < p;(y;)]-

Proof. ”==" First, we show that V{z;,z!} C Z N H;, we have
pi(zi) = pi(a7).-

Indeed, since z; ~ z} it follows that there is k € I, ¢ < k, such
that i (z;) = pir(2}), that is zx = z;.

Suppose that pi(z:) < pu(e). Then pe(w(z:)) < us(pan(z)),
that is pk(zx) < pr(x}) contradiction with z; = zj.

We shall check now that Vj € I, we have p;(z;) < p;(y;)-

For j € I, i < j, we have p;(p;i(z:)) < pi(pii(y:)), that is
mi(x5) < p3(y5)-
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Let us suppose that there is k € I, such that px(zr) > pr(yr)-
Since (I,<) is directed partially ordered, it follows that there is
tel, k<t t<t. Since ur(xx) > ur(yx) it follows ps(z:) > pe(ys)
and since p;(z;) < pi(y;) it follows pe(z:) < pe(y:), contradiction!

Therefore, for any j € I, we have p;(z;) < pi(y;). (]

22. Corollary. We have
i(Z) = i(y)
= [Fiel, 3z;€ZNH;, Jy; €5 N H;, such that p;(z:)=p(v:))]
> [Vj €1, Va; € TN H;, Yy € Y0 Hyy pj(xs) = ps ()]

23. Remark. Let (H, ) and (H', p') be fuzzy subsets. If f:H—H’
is a f.s. homomorphism, then the following implication holds:

V(z,y) € H?, f(z) = f(y) = n(z) = p(y).

Proof. Indeed, since f(z) = f(y) it follows p/'(f(z)) = /'(f(y)).
If we suppose now that u(z) < p(y), then p'(f(z)) < w'(f(¥)),
contradiction! Therefore, u(z) = p(y). n

So, we can define the function:

g:Imf— [07 1]7 g(f(x)) = H(CC)

We can choose [i in many manners.

24. Examples.

1. Let 4y € I and let us define u'(Z) = w;y(z;,), VZ € H. Then
we can consider i(Z) = p/(Z), VZ € H.

2. Let F be a finite subset of I and |F| the cardinal of F’
w'(@) = mi(z)/|F.

i€l
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Remember that V{z;, z;} C Z N H;, we have p;(z;) = ui(z}).
I p'(@)<p’(y), that is > p(@)/|FI< Y mlys)/|Fl,
i€F ieF
then Jip € F, such that p;,(zi,) < pi,(Ys,)- So, we can consider
a(z) = p"(z), vz € H.

25. Proposition. Let {(H;, u;)}ier be a direct family of fuzzy
subsets and let {(H;,0;)}ier be the family of join spaces associated
with the previous fuzzy subsets. Then {(H;,0;)}icr is a direct family
of join spaces.

Proof. We only need to prove that for V(s,j) € I?, i < j
wij : Hy — H; is a homomorphism of join spaces, that is
Y(zi,3:) € HZ, Yz € zi0;y;, we have v;;(2) € ¢ij(x:) o i (wi),
that is z; € ;05 y;.

Indeed, by z; € z; o; y; it follows

min{u;(z:), i (yi)} < pa(z) < max{p;(;), ps(v:)}-
Suppose pi(z;) < pi(y:); we have pi(z:) < pi(#) < pi(ys). Since for

t < 7, p;; is a f.s. homomorphism, we obtain

(@i (2:) < pi(eii(2:)) < pi(eis (),
that is p;(z;) < pj(2;) < pi(y;), whence z; € x;0;y;. =
26. Theorem. Let {(H;, ;) }icr be a direct family of fuzzy subsets
and {(H;, 0;) }icr the direct family of join spaces associated with the
previous fuzzy subsets. Let (H,*) be the direct limit of the direct

family of join spaces.
Then (H, *) is also a join space, associated with a fuzzy subset.

Proof. Let (H,o) be the join space associated with a fuzzy subset
i1, which satisfies the following condition:

ﬁ(f) < ﬂ(:lj) s [31 e€l, 3x; € INH;, EIy, € gNH; : ui(fl,'i) < [,L,(y,)]

Then Zoj = {z € H | min{fi(), a(7)}} < () < max{Q(z), &(7)}-
Suppose that A(Z) < A(y). Then zo0§ = {z | A(z) < i(z) <



188 PIERGIULIO CORSINI and VIOLETA LEOREANU

< ﬂ(g)} = {Z l di GI, 3.'17, €T N Hi, EIZ-,' €zN Hi : ,ui(z,-) < ui(zi)
and 3j € I, 3z € Z € Hj, Fy; € g0 Hj = p(2) < 15(y5)}-

Since I is a directed partially ordered set, it follows that there
iskel i <k, j<k Wehave ur(pi(z:)) < pr(pir(2)) that is
pr(zk) < pr(zk) and similarly, pr(z) < p(yx). Therefore, Z o g =
= {Z | dkel, 3z, €T NHy, Izx€ZN Hy, Jyp €y N Hy, : uk(xk) <
< (o) < ueye)} ={Z| 3k € I : 2 € zx op Y} = Z* Y. Then the
join spaces (H, o) and (H, %) coincide. =

IT) First, we shall introduce the notion of inverse limit of hyper-
groups and then we shall study it for an inverse family of join spaces
associated with fuzzy subsets.

27. Definition. We say that a family of hypergroups {(H;, ®;) }ier
is an inverse family if:

1. (I,<) is a directed partially ordered set;
2. V(i,7) € I?, we have H; N H; = <= i # j;
3. V(4,7) € I?, i > j, there is a homomorphism of hypergroups

i » Hi — Hj, such that: if ¢ > j > k, 9 0 9;; = ¢ and
Vi € I, 9; is the identity mapping.

Let us consider now (H H;, ®) the direct product and let
iel

H= {:06 I H: | ¥i(pi) = ps, Vi ZJ'},

i€l
where p = (p;)ies. If H # 0, we define on H the hyperoperation:
Toj={(cH|2cZQ7}=EQ7NH.

The assumption H # () is really necessary. In [447], G. Gritzer
presents an example of an inverse family of nonvoid sets, whose



APPLICATIONS OF HYPERSTRUCTURE THEORY 189

inverse limit is void. The following theorem shows that this cannot
happen if all the sets are finite and nonvoid.

28. Theorem. [[447], Th.1, p.132] The inverse limit of a family
of nonvoid finite sets is always nonvoid.

Another situation for which the inverse limit of a family of
nonvoid sets {H;}:cr is nonvoid is the following one:

If I has a maximum element, then H # {.

Indeed, if s = max I, then Vp = (p;)ics, 35 € H. §; = Ysi(ps,),
because Y(i, ) € I?, i > j, we have: ¥i; (¥i(ps)) = ¥s;(ps), that is
Yi;(P:) = bj-

In the following, we shall consider (I, <) a partially ordered
set, with a maximum element.

29. Theorem. Let I be a partially ordered set, with a mazimum
\el\e/ment s. If {(H;, ®:) }ier is an inverse family of hypergroups, then
(H, o) is a hypergroup. Moreover, ifVi € I, (H;,®;) is a join space,
then (H, o) is also a join space.

Proof. Let us verify first that (H, o) is a hypergroup.

The associativity. We shall check that ¥(%,7,%) € H®,
(ioy)oz (x®y)®zﬂH We have to verify only the inclusion ”D”
Let f € (w®y)®zﬁH There is u € T ® 7, such that £ € u ® Z,
soViel,t; € u®;%, particularly , € u,®, zs For all j € I,
we have (%) € ¥s;(us) ®; ¥5;(Z:), that means &; € 1hy;(us) ®; .
Letu € H defined in this manner: %; = v,;(u;), V7 € I. We have:
t; € U;®;%;, Vj €I, whence t € o Z.

Since v € T ® ¥, it follows u; € Z,;®;7;, Vj € I; so,
Us € Ts Qs Us, Whence 955(u;s) € Vsi(Zs) ®;Ysi(Ts), V§ € I, that is
i; € T;®;Y;, Vj € I, hence # € F® jN H = % o §. Then,
t€ElioZ C(Tof)oZ.

Similarly, we prove that Zo(go2) =I® (y®§lﬂH Therefore
(Fof)oZ=(E0)@INA =70 @F®2NH =Fo (o),
Y(%,9,%) € H3.
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The reproducibility. For any (Z,%) € H?, there is z € 11 H:
such that Z € § ® z, whence Vi € I, we have T; € ¥; ®; z;. uEF‘iom
T € Ys ®s 25, it follows 1,;(Z;s) € 955(Ts) ®j ¥sj(25), Vj € I, that is
%; € §;®;1s;(2s). Let us consider Z € H, such that Z; = t,;(z,),
Vj € I. So, Vi € I, we have Z; € ¥;®;Z;, whence T € Jo Z
Therefore §j o H = H and similarly, we have H 0§ = H.

Therefore, (H ,0) is a hypergroup.

Let us suppose now that Vi € I, (H;,®;) is a join space. We
shall prove the following implication:

Y(%,7,%,1) € HY, Z/§Nt/Z#4 0= FoZNFol #£0.

From Z/§N#/Z+# 0, it follows that i € H : Z € o € §® T and

]

t € Z01 C Z® 4. Then, z/yﬂt/z;é 0 in (HH,,@) which is a
iel

join space, so x®zﬂy®t 7é 0. Hence e T®Zand v € T, that

means Vi € I, v; € 7;®; % and v; € ¥; ®;t;. From v, € s ®, 25, it

follows that V] € I, ’(/)sj('()s) € 'lﬁsj(fs) ®j "l)sj(gs) = fj ®j Ej.

Let us consider ¥ € ﬁ such that 7; = v5;(vs), Vj € I. We
have v; € :c] ®; Zj, Vj € I, that means ¥ € T o Z. Similarly, from
Us € Us ®s L, it followstyot s

Therefore, 7o ZNgot #, so (H,o) is a join space. ]

30. Definition. (H,o) is called the inverse limit of the inverse
famaly {(H;, ®:) }ier-

Finally, we shall analyse the inverse limit of an inverse family
of join spaces associated with fuzzy subsets.

31. Definition. Let F = {(H;, u;) }ic1 be a family of fuzzy subsets.
We say that F is an inverse family of fuzzy subsets if:

1. (I,<X) is a directed partially ordered set;
2. V(i,5) € I?, we have i # j <= H; N H; = 0,
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3. V(i,j)€I?, i > j, there is a f.s. homomorphism v;; : H;—Hj,
such that: if ¢ > j > k, we have ¥z o ¥;; = ¥y and ;; is the
identity mapping for all i € I.

32. Proposition. Let F = {(H;, 1:) }ic1 be an inverse family of
fuzzy subsets. Then the family {(H;, o;) }icr of join spaces, associa-
ted with the previous fuzzy subsets, is an inverse family.

Proof. We shall check that V(i,5) € I?, i > j, 9;; is a homomor-
phism of join spaces, that means: if z; € x;0;y;, then ¥;;(z) €
€ ¥i5(2;) 05 Y5 ()

Suppose pi(z;) < pi(y:). From z; € x; 0;y;, it follows p;(z;) <
< pi(2:) < pi(y:) and since ;5 is a f.s. homomorphism, we obtain

5 (Vig(x:)) < pi(ii(2i)) < pi(ii(wi),
that is ;;(2:) € () 059 (i) n

33. Proposition. Let {(H;, u;)}icr be an inverse family of fuzzy
subsets and {(H;, o;) }ier the associated inverse family of join spaces.
If H# 0 and 3i € I : pi(F:) < (%), where T = (Z;)icr € H and
¥ = (Ui)icr € H, then Vj € I, we have p;(Z;) < p;(7;)-

Proof. Let us consider j € I, j < i. Since v;; is a f.s. homomor-
phism, from 4;(%;) < (%) it results u;(vi;(%:)) < p;(%i5(%:)), that
is p3(Z;) < pi(F5)- '

Let us suppose that 3p € I, such that p,(Z,) > p,(7,). Since
I is a directed partially ordered set, it follows that 3t € I, t > ¢,
t>p.

If p(Ze) < pe(Ge) it follows pp(vep(Zt)) < pp(Yep(#)) that is
Up(Zp) < pp(Tp), contradiction with the made assumption.

If p(Z2) > pe(Fe) it follows pi(vr(Z:)) > ps(u()) that is
1i(Z;) > pi(y:), contradiction with the hypothesis.

Therefore, Vj € I, we have p;(Z;) < p;(7;)- [

34. Corollary. In the hypothesis of the previous proposition, we
have that if 3i € I, such that p;(;) = (%), then Vi € I, p;(Z;) =
= 145(5;)-
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35. Theorem. Let {(H;,pi)}icr be an inverse family of fuzzy
subsets, {(Hi, 0:)}icr the associated inverse family of join spaces
and let suppose H # 0. Then the inverse limit (H, o) is also a join
space associated with a fuzzy subset.

Proof. Let (H, ®) be the join space associated with a fuzzy subset
i1, which satisfies the following condition: if (Z,y) € H?, then

B(Z) < B(y) <= Ji € 1 = pi(T) < pal@i)-
We have
Teg={z € H | min{ji(), i(7)}} < () < max{fi(2), i(7)}
Suppose ji(Z) < §(y). Then T o § = {Z | i(Z) < fi(Z) < Li(7)}-
From fi(Z) < [i(Z) and the previous proposition, it follows that
pi(Z;) < pi(Z), Vi € I. Therefore, Z o § = {Z | pi(%;) < mi(z) <
<pi(%), Viel} ={Z|Z €Tioifi, Vie I} =To7.
Then the join spaces (H, o) and (H, o) coincide. n
36. Remark. We can choose [i is many manners. For instance,
1. Vi€ H, ji() = pi,(&;,) for some i € 1.
2. Vi e H, i(z) = > 1i(Z:)/|F|, where F is a finite subset of
i€F
I, and |F| is the cardinal of F.
Indeed, we have [i(Z) < [i(§) <= 3i € I, such that pu;(T) < (7).

83. Rough sets, fuzzy subsets
and join spaces

Let H be a set and R be an equivalence relation on H. Let A be a
subset of H.
The main question addressed by rough sets (Pawlak, 1982) is:
How to represent A by means of H/R?
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Denote by R(x) the equivalence class of z € H.

37. Definition. A rough set is a pair of subsets (R(A), R(4))
of H, which approximate as close as possible A from outside and
inside, respectively:

R(4)= U R(@);
R(z)NA#D
R(A) = (L)J R(z).

Rough sets have been utilized as an instrument to study in deep
the theory of knowledge (Artificial Intelligence) by Pawlak (a Polish
mathematician) and many others.

One can remark (Biswas, 1999) that Rough Sets can be consi-
dered a special case of Fuzzy subsets, letting correspond to
(R(A), R(A)) the membership function 14, defined

|R(z) N A
pae) = A
|R(z)]
Now, let us see how join spaces can be associated with rough sets.
The results presented in this paragraph belong to P. Corsini.

38. Theorem. The partial hyperoperation

V(z,y) € H?, zoy = R({z,y}) — B({z,y})
is defined everywhere if and only if
(e) Vz € H, |R(z)| >3

Proof. Let us prove now the implication <.
Set Vz |R(z)] > 3. Then we have

R{{z,y})= U R() =0

R(z)C{z.y}
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whence zoy = R(z) U R(y) # 0.

Let us prove the implication =.

Let us suppose z exists such that R(z) = {z,2'} and z # z'.
Then

gzod'= |J R()- U R(z)=R(=z)-R(=z)=0.

R(z)N{z,z'}#0 R(z)C{z,x'}

Let us suppose z exists such that R(z) = {z}.

By the same way one finds zox = R(z) — R(z) = (. Therefore,
Vz, |R(z)]>3.

Then (H; o) is a hypergroupoid if and only if Vz, |R(z)| > 3m

39. Theorem. < H;o > is a join space if and only if

Yz € H, |R(z)| > 3.

Proof. SetV(z,y), z®y = R({z,y}) = R(z)UR(y). By Theorem
38 it is sufficient to prove that if < H;o > is a hypergroupoid, then
it is a join space.

Let us remark that the hypothesis |R(z)] > 3 implies:
<0>=< ® >, so zoy = R(z) U R(y). It follows that < H;o >
is a commutative semi-hypergroup.

Moreover, since every z is an identity, it follows that < H;o >
is a hypergroup.

It remains to prove that the implication a/bNc/d # 0 =
aod Nboc # { is satisfied.

Set (I): a/b > z € ¢/d, that is a € boz, ¢ € doz, whence

a € R(b) U R(z), c € R(d) U R(x)

moreover aod = R(a) U R(d), boc = R(b) U R(c).

We have a € aod, so, if a € R(b) C boc, it follows a € aodNboc.

By the same way, ¢ € R(d) implies ¢ € aod N boc.

Let us suppose now a¢R(b) and c¢ R(d). Then it follows a €
R(z) whence z € R(a) C acod, ¢ € R(z), whence z € R(c) C boc.
Therefore (I) implies aod Nboc # P, so < H; ® > is a join space. m
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Let us suppose now |H| < Xp.

40. Theorem. Let < P*(H);p > be a fuzzy subset. There is a
knowledge < H; R > such that

|R(X)|

[R0))

if and only if the following condition is satisfied

VX e P*(H), mX) = pr(X) =

(D) An integer m > 0, and a partition of H, {A;}ici(m) exist
so that, for all non empty subsets S and J of I(m) such that
SNJ = 0, for every family {A.}ses of subsets, A’sgAs, setting

Vi € I(m), a; = |A;|, we have:
1) p (UA; =0.

sES Z]aj
(U E S s v

jeJ SES

Proof. (D) is sufficient.
Let R be the equivalence relation on H such that

H/R={A;|ie€I(m)}.
VX € P*(H), we can represent X as the union
X=U4 04,
jeJ s€S
where
JuSclI(m), JNS=10
J={jelm)| 4 cX},
S={sel(m)|As ¢ X, A, =X NA, # 0}
So, we have:
B-(X) = UAjr
jeJ

BEX)= U 4=U4uUA

ANX#D jeJ seS
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Therefore
Za,-
; R(X)
X) = — 3% = I_ = pp(X
N( ) Zaj‘*‘zas IR(X)’ lu‘R( )
jeJ s€S

The condition (D) is necessary.
Let {A;}ici(m) be the set of equivalence classes of R.
Then VX € P*(H), if we set

J={jel(m)|4; C X} ,
S={sel(m)|A; ¢ X}, Vs€ S, A,=A,NX,

we have
R(X)=U4;
jeJ
Bx)= U a=Us4u U A
ANX#D jeJ AsZX

AgNX#0

So we obtain:

7 (SLEJSA’S> =0, pX)= _*Za%a%as

jeJ s€ES

84. Direct limits and inverse limits
of join spaces associated
with rough sets

The results of this paragraph have been obtained by V. Leoreanu.
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I) First of all we establish necessary and sufficient or only sufficient
conditions for direct limits and products of models associated with
rough sets to be join spaces.

Let us recall some definitions. A model is a pair < H,p >,
where H is a nonempty set and p is a binary relation on H.

Let us recall what a rough set is.

Let H be a nonempty set and R an equivalence relation on H.
For every X C H, X # 0, set

RX)= U R@)andRX)= | R()= | Rw).

R(y)CX R(z)NX#0 weX

The pair (R(X), R(X)) is a rough set. We have seen that a join
space is associated with a rough set in the following manner:

41. Theorem. Let R be an equivalence relation defined on a
nonempty set H and < o > the partial hyperoperation defined

(*) zoy = R({z,y}) — R({z,y}).

Then < o > is defined everywhere <= Vz € H, |R(z)| > 3 <=
< H,o > is a join space.

If <H’; p’ > is another model, we say that a function f:H—H’
is a homomorphism of the models if for every (z,y) € p, we have
(f(z), f(y)) € p'. A family of models {< H;, p; >}icr is direct if the
following conditions holds:

(i) ({,<) is a directed partially ordered set;
(i) V(i,j)eI? i#j= H;NH; =0;

(i) V(i,j) € I? if ¢ < j, a homomorphism of models

Wy H; — Hj is defined, such that if ¢ < 5 < k, we have
Viv; = ¢} and Vi € I, o} = 1d(H;).

On H = UH,- the following binary relation is defined as follows:
i€l

V(zi,y:) € H;xHj, z;~y;<=3kel,
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k>4, k> j, such that @i(z;) = @i(y;)-
The relation ”~” is an equivalence relation.
©’(z;) is denoted by ;.
Set H=H/~.
On H is defined the binary relation p as follows
(zZ,9) e p<=>3q€l, 3z, € 2N H,,
Jz, € 2N Hy, such that (x4, 2;) € pg.

Let < H,® > (H;,®;)) be the partial hypergroupoid corres-
ponding to 5 (p;, respectively) and defined by (*).

42. Theorem. If < H,® > is a join space, then there is £ € I,
such that (Hy, ©g) s a join space.

Moreover, for everyi € I,1 > £, we have that (H;, ®;) is a join
space.

Proof. Since < H,® > is a join space, then VZ € H, we have
|5(Z)|=3. Let {Z, 91,72} be three different elements of p(z). We
have

Viel, Vo; €ZNH;, Yy; € g1 N H;,
Vyau € 92N H;, Ti # Yu # Y2 # Ty

otherwise Z, 7;, J2 would not be different. Since Z p 7, it follows
that

)

3] € I, 3.1,']' € EOHJ—, Ely;j € ﬂHj : (.’L‘j,ylj) epj
Similarly, since Z s, it follows that
Jkel, 3xy € TN Hy, 3yax € g2 N Hy : (.’L‘k,ka € pPk.

But Z) =T = Z;, so zx ~ z;, that means ¢ € I, £ > k, £ > j, such
that §(zx) = ¢)(z;) = z¢. Using now the fact that V (i,7) € I?,
t < g, <p;. : H; — H; is a homomorphism of models, we have the
implications:

(z,y1;) € pj = (24(5), P1(¥1;)) € pe
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and
(zk, Y2x) € P = (95 (z1), Pf (Y2x)) € pe.
Therefore, (z¢,y1¢) € pe > (Te, Yar)-
By (1), we have ¢ # y1e # Yae # Te, 50 |pe(ze)| > 3.
Since T is whichever in H, it follows that x, is whichever in H,.
So, by Theorem 41, it follows that (He, ©;) is a join space.
Now, since (¢, Y12) € pe D (x4, y2¢) it follows that Vi € 1,7 > ¢,

we have (@f(x¢), 0f(y12)) € (#F(xe), ¥F(y2e)) that is
(zs,y15) € pi 3 (i, y2i)-

Moreover, by (1), it follows z; # y1; # Yo; # z; and since z; is
whichever in H;, we have that (H;, ®;) is a join space, by Theorem
41. u

43. Theorem. < H,® > is a join space if and only if 3¢ € I,
Vzp € He, 3{y10,Y2¢} C pe(ze) such that Tp # Gre # Goe # Te.

Proof. =" By the previous theorem we have that
Hel, YV, € Hy, E(yu, yu) € HE,

such that € # Y1 # y2e # o and Vi € I, i > £, of(zy) = z; #

# ‘Pf(yle) =yu # ‘Pf(yze) = y3; # ; and (z;, Y1) € pi D (@i, y2i), 50O
it results the thesis.

7<«=" Let us suppose that 3¢ € I, Vz, € Hy, I{y1e,y2¢} C
pg(_.’liq) 2 Ty F# Yo F Yae F Te. S0, VI, € H, Ip'(.'—i‘g)l > 3, whence
< H,® > is a join space. ]

44. Proposition. Let {< H;, p; >}ier be a direct family of models.
If there is k € I, such that V't € I, t > k, ¢F is injective, and such
that < Hy,®p > is a join space, then < H,® > is a join space.

Proof. By Theorem 41, < H, ® > is a join space if and only if
V(z,y) € HE,

zory =({z,y}) — pe({z,9}) # 0
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if and only if Vz € Hy, |pr(z)|>3. We have the implication (z,y) € px
= (Z,9) € p.

Let us remark that if (y1,92) € HZ, y1 # va, then Vt € I,
t > k, we have ©¥(y1) # ©F(v2), that means §; # #. Therefore,
if Vo € Hy we have |pr(x)] > 3, then VZ € H, |p(Z)| > 3, so, by
Theorem 41, < H,® > is a join space. n

45. Remark. If I has a maximum M and ¢%, is injective, then
Vte I, t >k, we have ¢f is injective.

Proof. We have @i, o oF = %, and since ¢k, is injective, it follows
gof is injective. |

Direct products

Let < H;,®; > and < Hs, ®2 > be two hyperstructures, where for
all i € {1,2}, V(z,y) € HZ,

z®:y =n{z,y}) — p({z,9}).
Let pyxpo be the binary relation defined on H = H,; x H, as follows:
((a1,21), (a2, 22)) € prXp2 <> (a1,a2) € p1 and (21, %2) € pa.
Let ® be the hyperoperation defined on H as follows:
V(e,f) € H?, a® B =p1xpa({a, B}) — prxpa({, B}).

46. Proposition. If < Hy,®; > or < Hy,®; > is a join space,
then < H,® > is a join space.

Proof. Let us suppoose < Hy, ®; > is a join space. Then Va, € H;,
|p1(a1)| > 3. Let {a1,a2,a3} C pi(a1), a1 # a2 # az # a;. Then
Vx, € Hy, it follows that ((a1,z1), (a1, 21)), ((@1, 1), (a2, 1)) and
((a1,21),(as,z1)) are different elements of p;xps, whence
V(a1,z1) € H, |(p1xp2)((a1,21))| > 3, so < H,® > is a join space.
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47. Proposition. If < H;,®; > and < H3,® > are partial
hypergroupoids defined as in Theorem 37, such that

Va; € Hy, |pi(a1)]=2 and
Vz1 € Ha, |pa(z1)| =2,

then < H,® > is a join space.

Proof. For every a; € H; and 21 € Ha, set pi(ay) = {as,a2}
and p2($1) = {xlazQ}' SO7 ((alvml)v(al)zl))r ((a17$1)7(a2)z1))1
((ay, 71),(ag x2)) are different elements of p;xp2, that is V(ay, z1) € H,
|(p1xp2)(a1, z1)| = 3, that means < H,® > is a join space.

48. Remark. By the proof of the previous proposition, it follows
that if < H,® > is a join space and (a;, ;) is whichever in H, we
have:

(i) if |p1(a1)] =1 then |pa(z1)] = 3;
(i) if |p2(a1)| = 2 then |pz(21)] 2 2;

(1) if |p2(a1)| = 3 then |p2(z1)| can be whichever nonzero natural
number. n

IT) In the following, it is shown that the direct (inverse) limit of a
direct (inverse) family of join spaces associated with rough sets is
a join space associated with a rough set.

I1.1) Direct limit of a direct family of join spaces associated
with rough sets

Let {< H;, p; > }icr be a direct family of models, H = UHi and let
i€l

consider on H the following equivalence relation (see [322]): z ~ y

if and only if the following implication is satisfied:

(z,y)eH;xH; => 3kel; k> i;k > j, such that u(z)=p;x(y).



202 PIERGIULIO CORSINI and VIOLETA LEOREANU

If z; € H; and i < j, we shall denote ¢;;(z;) by z; and by H the
quotient set H/ ~= {Z |z € H}.
We define on H the following binary relation (see [232]):

@ V(z,5)€H’, Zp*y if and only if Jiel,
Jx; €z N H;, Jy; €y N H;, such that z;p;y;.

49. Definition. (H,p*) is called the direct limit of the direct

family of models {H;, p;}ier-

50. Proposition. IfVi € I, p; is an equivalence relation on H;,
then p* is an equivalence relation on H.

Proof. The reflexivity and symmetry result directly by the defini-
tion of p*. Let’s suppose now Zp*y and yp*z. It follows there are
(Z,]) € 12, ; ETNH;, y; € yN Hj, Y; € ?jﬂH,- and Zj € ZﬂHj,
such that z;p;y; and y;p;z;. We have y; ~ y;, so there is k € I,
k >4, k > j, such that pi(y;) = @r(y;) = yk- Since py and
@;jx are homomorphisms of models, it follows: @ (z;)prpi(y:) and
©ik(Y;) prpik(z;), that is Tk pryx and yrpx2k, whence T pg 2k, S0 Zp*Z.
Therefore, p* is transitive, hence it is an equivalence relation. m

51. Proposition. Let {< H;, p; > }ier be a direct family of models,
where Vi € I, p; is an equivalence relation, such that Vx; € H;,
|pi(x:)] > 3. For any i € I, let us consider the hyperoperation "o,,”
defined on H; as in (x) (Theorem 41), that is:

79,9 = Pi{Zi, y:}) — pil{zi, vi})-
Then {< H;,0,, >}icr s a direct family of join spaces.

Proof. It is sufficient to notice that if (¢,7) € I?, i < j and ¢y
is a homomorphism of models, then ¢;; is a homomorphism of join
spaces. Indeed, Vi € I, V (x;,y;) € H?, we have

z:0p,Y; = Pi({Ts, i }) — Ei({xiv vi}) = pi{zs, u:}) = i) U pi(v:)



APPLICATIONS OF HYPERSTRUCTURE THEORY 203

because p; is an equivalence relation and so, any equivalence class
has at least three elements.
On the other hand, if z} € p;(z;), then Vj e I, < 3,

pii(zi) = 2 € pi(pij(w:)) = pji(z;),
since ¢;; is a homomorphism of models. Therefore,
vi(pi(x:)) = pis({z; € Hi | mipizi}) = {2 € H; | 2ipjz;} = pi(a;),
whence

©ij (i 0p, Y3) = @iz (ps(x:) U pi(wi)) = @i (pi(:)) U i (pi(w:)) =
= p;i(z5) U pi(y;) = Tj0p; Y5 = 0iz(2:) 0p; i (%),

hence ¢;; is a homomorphism of join spaces. |

Let us consider on H the following hyperoperation (see [322]):

Zxg={z|3Jiel, Iz; € zNH; y; € yN H;,
3z; € ZN H;, such that z; € z;0,, ¥;}.

52. Definition. (H, x) is called the direct limit of the direct family
of join spaces {< Hj,0p, >}ier-

53. Theorem. Let {< H;,p; >}icr be a direct family of models,
where Vi € I, p; is an equivalence relation, such that Vz; € H;,
lpi(z:)] > 3 and let {< H;, 0, >}icr be the corresponding direct
family of join spaces. Then the direct limit (H,*) of the previous
direct family of join spaces is a join space, associated with the model
(H, p*), where p* is the equivalence relation defined by (2).

Proof. First, notice that (H, *) is a join space, being a direct limit
of a direct family of join spaces (Prop. 1, [235]).

Let ” o,» 7 be the hyperoperation, associated with the equiva-
lence relation p*, defined as in (*), Theorem 41, on the set H :

Zopy=p*({Z,9}) — p"({Z,9}) = ({2, 8}) = p* (@) U P (9),
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since p* is an equivalence relation and so, Vz € H, |p*(2)] > 3. On
the other hand,

Zxg={z€H|Jiel, Iz, €TNH;, 3y;: € §N H;,
3z; € 2N H;, such that z; € z;0,, y;}.

We have z;0,, y; = pi({z:, 4:}) — pil{zi, 4:}) = piz:) U pi(ws),
so since z; € x; 0, y;, one obtains 2z;p;T; or z;p;y;, whence Zp*ZT or
Zp*y, that is Z € p*(Z) U p* (7).

Therefore, Z+§ = {Z| Z € p*(Z)Up*(9¥)} = T o, §, that means
the join spaces (H,*) and (H, 0,+) coincide. n

I1.2) Direct products of join spaces associated with rough
sets and inverse limit of an inverse family of join spaces
associated with rough sets

Let {< H;, p; >}ier be a family of models, where Vi € I, p; is an
equivalence relation.

54. Remark. The direct product p = H pi of the family {p;}ics is
iel
an equivalence relation on H = H H;. We recall that if x = (2;)ier
i€l
and y = (y;)ier are in H, then zpy if and only if Vi € I, x;p;y;.

Let us denote by” o,” and by ” o,, 7, where i € I, the hyperope-
rations induced by p, respectively, by p;, defined as in (*), Theorem
41, on the set H, respectively on the set H;.

55. Proposition. If {< H;,0,, >}icr is a family of partial hyper-
groupoids (Vi € I, p; is an equivalence relation), such that at least
one 1s a join space, then < H,o, > is a join space.

Proof. We shall verify that Vo = (z;):;c;r € H, |p(z)| > 3. We have
p(z) ={y € (Yi)ier € H | Vi€ I, z;p;y;}. Since Jip € I, such that
< Hjy, 0y, > is a join space, it follows that V x;, € Hi,, |pig(:9)| > 3,
whence Vz € H, |p(z)| > 3, therefore < H,0,> is a join space. =
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56. Proposition. If {< H;, 0, >}icr is a family of partial hyper-
groupoids (Vi € I, p; is an equivalence relation), such that there
are ip and jo in I, io # jo, for which ¥V z;, € Hyy, |piy(zs,)| = 2 and
Vo € Hjo, |pjo(Zjo)l = 2, then < H,0, > is a join space.

Proof. By hypothesis, for any = = (z;);cr, we have

Ip(x)l > |Pio($i0)l . ijo(zjo)l >4,

so < H,o, > is a join space. n

57. Proposition. Let {< H;, 0, >}icr be a family of join spaces
(Vi€l, p; is an equivalence relation, such thatV z; € H, |p;(z;)|>3)
and let < H,® > be the direct product of this family, that is
Vz=(z;)ic1 € H, Yy = (Yi)icr € H we have £ @ y = (z; op, Yi)ic1-
Then the join space < H,® > is an enlargement of the join space
< H,o,>.

Proof. For any z = (;);er and y = (¥;);cr elements of H, we have:

T®Y = (i 9, Yi)ier = (pi(x:) U pi(¥:))ser-
On the other hand,

zo,y=p(z) U p(y) = {2€H |Vi€e ], z € p;(z;)}U
U{ze H[Vi € I, z € pi(y:)} C (pi(z:) U pi(%:) )ier=2 ® 9,

that means that the join space < H,® > is an enlargement of the
join space < H,0, > . [

Let us study now the inverse limit of an inverse family of join
spaces associated with rough sets.

58. Proposition. Let {< H;, p; >}ier be an inverse family of mo-
dels, where Vi€ 1, p; is an equivalence relation, such that V z; € H;,
|pi(z:)| = 3. Then the family {< H, o, >}icr of join spaces, where
70, 7 is defined as in (%), Theorem 41, on H;, is an inverse family
of join spaces.
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Proof. The proof is similar to that one for direct families. [

Let {< H;,0,, >}icr be an inverse family of join spaces, where
Vi€, the hyperoperation ” o), ” is defined on Hj, as in (x), Theo-
rem 41.

We consider the following subset of the direct product
H= H Hi .

i€l
H={peH| fi(p) =pj, Vi > j}, where p= (p:)icr.
If H # (), we define on H the hyperoperation:
(3) | Foj=Z®FNH.
59. Remark. If I has a mazimum, then H # ( (see [235]).

60. Definition. Let {< H;,0; >}icr be an inverse family of join

spaces and let < H = HHi,® > be the direct product of this
i€l

family. Suppose H # (). Then < H,o > is called the inverse  limat

of this inverse family of join spaces, where ”o” is defined on H, as

in (3).

61. Theorem. Let {< H;, 0, >}icr be a family of join spaces
(Vi€lI, p; is an equivalence relation, and let’s suppose thatV z; € H;,
|pi(z:)| > 3), such that (I,<) has a mazimum s. Let < H,® > be
the direct product of this family. Then the hyperoperations "®” and
7o, ” coincide, where p = H Di-
icl

Proof. Let x and y be two arbitrary elements of H and let z € z®y.
It follows that Vi € I, we have z; € z;0, 1 = pi(x:) U pi(%:);
particularly, z; € ps(zs)Ups(ys). Suppose zs € ps(xs), that is 2,p,T5;
hence, Vi € I, fsi(2s) = zipi fsi(xs) = =i, whence z € p(z). It results
z€ p(z)Up(y) =z0,y,50, 2@y C z o,y and since z0,y C zQy,
one obtains that the hyperoperations ” o,” and ”®” coincide. =
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62. Theorem. Let {< H;, pi> }icr be an inverse family of models,
where Vi € I, p; is an equivalence relation, such that Vz; € H;,
|pi(z:)|>3 and let {< H;, 0, >}icr be the associated inverse family
of join spaces.

If I has a mazimum s, then the inverse limit of the inverse
family of join spaces is a join space associated with a rough set.

Proof. Let (H, o) be the inverse limit of the inverse family of join
spaces. o

Let p :H p; and p=pNH xH. The relation p is an equivalence

icl

relation on H. We shall verify that the hyperoperations ”o” and
705" coincide.

Let Z and § be two arbitrary elements of H. We have 7 o,y =
= p(Z) U p(y), because < H,o, > is a join space, so Vz € H,
lp(2)] > 3. So,

Fof=FQFNH=%Fo0,jNH =
= (p(%) N H) U (p(@) N H) = j(Z) U (7).

On the other hand, Vi€ H,j5(@) = {s € H | pu} = {ve H |
Vi € I, vipiu;}, where ¥ = (v;)ier and @ = (u;)ier. So, U € p(T)
implies vspsus. Conversely, if vspsus, then Vi € I, fo(vs)p:fsi(us)
(because % and ¥ are in H and Vi € I, s > 1), that means Vi € I,
v;pit;, whence ¥ € p(%).

Therefore, ¥ € p(i) if and only if v, € ps(u,). Since Yu, € H;,
|ps(us)|>3, it follows that V& € H, |p(@)| > 3, because for every
vs € ps(us), there exists ¥ = (f5;(vs))icr € p(@) and this correspon-
dence is injecti\vfe. Hence, s?fog~ = p(Z) U p(¥) = T o 7, therefore the
join spaces < H,o > and < H, o5 > coincide. [}

§5. Hyperstructures and Factor Spaces

Another application of hyperstructures, again in the setting of Fuzzy
Set Theory and in particular of Decision Making is that one to Fac-
tor Spaces.
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Factor Space Theory was introduced in 1981 by Pei-~Zuang
Wang. Hong Xing Li and Vincent C. Yen have applied Factor
Spaces to Fuzzy Decision Making. Every Factor Space can be con-
sidered a generalization of the physical coordinate space.

We have a universe U of objects, where |U| < Xy, for instance
the universe of living beings, a set of concepts (as the concepts of
being either a man, or a mammalian or an insect or a plant etc.)
and a set of factors, that is a set of functions f : U — X (f) from the
universe U to X (f), the set of states of f, for instance the height
which sets in correspondence with every object u the size of the
height of u (when the height is definable for u, otherwise f(u) =6,
where 6 is the empty state). So, every object u of the universe can
be represented by the {f(u)}ser-ple, where its coordinates are the
elements f(u) € X(f), for every factor f € F.

A description frame is just a triple (U, C, F'), where C is the
set of concepts. Now, let us suppose that a concept a € C has as
extension, not simply a crisp set (that is a subset of U), but a fuzzy
subset A.

If (U,C,F) is given and f € F is a factor, a hypergroupoid
< U, 3 > can be associated as follows:

Toy = {a | A(a) € [ V  A(z), V ﬁ(v)} } .
f(z)=f(z) F(v)=f(y)
Let ”0” be the following hyperoperation defined on U:
zoy = {X | A()) € [A(x), A(y)}-
The following results have been obtained by P. Corsini.
63. Theorem. < U;6 > is a semi-hypergroup.

Proof. Since U is finite, there is o € U such that \/ Az) =
f(2)=f(x)
= A(o), and there is yo € U such that \/ A(v) = A(yo). So
F)=£(y)
we have x 6y = z¢ o Y.
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IfteUand A(u) = A(ty), we have clearly
Fw)=£()
(z8y)dt=(zooyo)oto =00 (yooto) =5 (ydt),

whence < U; 6 > is a semi-hypergroup. n

Since U is finite, there is p € U such that
A(p) = min{A(z) | z € U}.

64. Theorem. Let us suppose f~'f(p) C A 1(A(p)). Then
< U;% > is a hypergroup.

Proof. It is enough, by Theorem 63, to prove that < U;5 > is a
quasi-hypergroup. B _
Let us prove, first, that for every a,b € U, if A(a) > V A(z),

F(2)=1(b)
then x exists such that a € bo z.

It is enough to set z = a. Indeed, we have
V AR <A@ < V AW)
f(z)=F(b) f(v)=F(a)
whence
A(a) € V AR), V A®)
F(2)=F(b) Fw)=f(z)
therefore a € béa =bdz._ B
Let us suppose now A(a) < \/ A(z).
f(2)=£(b)
Set y = p. Hence

V Aw)= V Aw)< V A()=Ap),
F@)=£(p) vef-1£(p) veA-14(p)
therefore
V Aw)=Ap)<A@< V A®)
f()=f£(y) f(z)=5(b)
so it follows a € y6b=pob. ]
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65. Corollary. With every factor f € F endowed with an exten-
sion satisfying the condition

f7f(p) c A Ap),
a join space < U;6 > is associated.
Proof. It follows straight off, from Theorem 64 and from Theorem
4 [70]. =

66. Theorem. Let < U;6 > be a hypergroup. If x € p/U
(see Definition 156 [437]), we have f~'(f(z))CA~*A(p) whence

FU@)CA ().

Proof. V(a,b) € U? z exists such that a € z6b. If Aa) <
< 'V A(v), we have
F(v)=£(b)

V AR <A@ <V A®)

f(2)=f(=) f0)=5()

So, if we set a = p, it follows

Ap < V A(z) < Ap),
f(2)=f(x)

whence V z € f~1(f(z)) we have A(z) = A(p), therefore
(@) € A7(AP))-
Since g€ U exists such that p€p 6 ¢, one obtains
fH ) AT (Ap). L
65. Corollary. < U;5 > is a join space if and only if

F(f(p)) c A7 (A(p)).

Proof. It follows straight off, from Theorem 66 and Corollary 65.-
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§6. Hypergroups induced by a fuzzy
subset. Fuzzy hypergroups

R. Ameri and M.M. Zahedi have considered an interesting hyper-
structure (G, o,,), associated with a fuzzy subset u. Notice that p
is a fuzzy subset on a group (G,-). They have proved that if u
is subnormal, then the hyperstructure (G, o,) is a hypergroup and
under suitable conditions, it is a join space.

We mention here some of their results.

68. Definition. Let (G, ) be a group and u a fuzzy subset on G.
We say that u is a fuzzy subgroup on G if and only if :

1) V(z,y) € G?, p(zy) > min(u(z), u(y));
2) Vz € G, p(z7!) = p(z).

Let X # (. Denote by F'S(X) the set of all nonzero fuzzy
subsets on X. From now on, we shall denote by e the identity of
the group G.

The concept of fuzzy subgroup was introduced by Rosenfeld
[328]. Notice that if u € F.S(G), then y is a fuzzy subgroup of G if
and only if any nonempty set p; = {z | p(x) > t} is a subgroup of
G, where t € [0,1].

69. Definition. Let p € F'S(G). We say that p is

1) symmetric if Vz € G, we have u(z) = p(z™1);

2) inwvariant if V(z,y) € G?, we have u(zy) = pu(yz);

3) subnormal if it is both symmetric and invariant.
70. Definition. Let y € FS(G) and =z € G. The left fuzzy coset
zp € FS(G) of p is defined by:

VgeG, (zu)(g) = u(z""g).
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Similarly, the right fuzzy coset uz € F.S(G) of p is defined by:

Vg eG, (uz)(9) = u(gz™).

71. Definition. Let (H, o) be a hypergroup and p a fuzzy subset
on H.

We say that p is a fuzzy subhypergroup on G if the following
conditions hold:

1) V(z,9) € H?, inf p(z) > inf{p(z), u(y)};

2) V(z,a) € H?, 3(y,2) € H?, such that z € aoy N zoa and
inf{u(y), u(2)} = inf{u(a), u(z)}-

The following result can be easily proved:

72. Proposition. Let u € FS(G) and (z,y,2) € G3. Then we
have:

1) zp=yp <> 2zp = 2yp;
2) zp = yp <> x2p = yzpu, if p is subnormal.

Let us make the following notations: if 4 € F.S(G) and (a,b) € G?,
then we denote °y = {z € G | zp = ap}, p* = {x € G | px = pa},
ap® = {az |z € p°} and p°u® = {zy |z € p®,y € p*}. f pis
invariant, then Va € G, we have %y = u°.

Another result which can be easily proved is the following one:

73. Proposition. Let p € F'S(G) be subnormal. Then:
1) V(z,y) € G?, we have zp = yp <> zy~! € us;
2) p¢ is a normal subgroup of G;
3) Va € G, u* = ays
4) V(a,b) € G?, peub = p.
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Now, let us consider on G the following hyperoperation:
0w : GXG = P*(G), ou((a,b)) = u*u
So, 70,” is the hyperoperation induced by pu.
74. Theorem. Let p € FS(G).
1) Then (G,o,) is a quasi-hypergroup.
2) If u is subnormal, then (G, o,) is a hypergroup.

Proof. 1) We shall verify that Va € G, a0, G = G = Go,a. Let
b € G. We have b € aoy,(a'b) N (ba') o, a. Hence, (G,0,) is a
quasi-hypergroup.

2) Let us check the associativity. Let (a,b,c) € G3. Since p is
subnormal, we have

(a.ou b) o,C= U pEpe = U e = N(ab)c~

IEIA“#" IE[I“b

We have used that x € u® implies uz = pab.
Similarly, we obtain ao, (bo,c) = p®®).
Therefore, (ao,b)o,c=ao,(bo,c). ]

75. Proposition. Let p € FS(G) be subnormal. Then (G,o,)
is a commutative hypergroup if and only if |G, G|, the commutator
subgroup of G, is included in pc.

Proof. Let (a,b) € G*. We have ao,b=bo,a > pu® = p»*
abp = bap <=> aba='b"! € pe, therefore (G,0,) is commutative if
and only if [G, G] C pe. =

76. Theorem. Let n € FS(G) be subnormal. Then (G,0,) is a
quasi—canonical hypergroup.
Moreover, there exists a good homomorphism from (G,-) to

(G,o0p)-
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Proof. Let x € G. We have x € y* = p** = pu® = eo, x and,
similarly, we have x € u® = u® =zo,e.

Moreover, e € zo,z7 ' Nz~ o, z. Now, let 2z € zo,y = p™.
It follows puz = pxy whence pz = pzy~!, that is z € zo,y™!. On
the other hand, py = pz~'z implies that y € 7! o, z. Therefore,
(G, o,) is a quasi—canonical hypergroup.

Let ¢ : G — P*(G), f(a) = p*. We have
f@)y=p*= U p¥= U zouy=pouu’ = f(a)o, f(b).

zy€uab rEps yeud

Hence, f is a good homomorphism. u

77. Theorem. Let p € FS(G) be subnormal. Then (G,0,) is a
join space if and only if |G,G] C p°.

Proof. <" Let (a,b,c,d) € G*. We have to verify only the impli-
cation:
a/bnNe/d#0=>ao,dNbo,c#0.

If z € a/bne/d, then a € zo, b and ¢ € zo,d, whence pa = pzb
and pc = pxd. It results pad = pzbd and pbe = pbxrd. Therefore,
we have the equivalence relations: ao,dNbo,c # O <= pad =
pbe <= pxbd = pbrd <= (zbd)(brd)™' € p® <= zbz~ b1 € pe.
So, if [G,G] C p®, then ao,dNbo,c # 0. Therefore, (G,0,) is a
join space.

?==" Conversely, if (G, 0,) is a join space, then according to
the previous calculations, V(z,b) € G?, we have zbz 1671 € pe,
whence [G, G} C p°. =

In the following, we mention here some results on fuzzy hyper-
groups, obtained by P. Corsini and I. Tofan.
Let M be a nonempty set. An application

o: MxM — P(M)* =P(M) - {0} =
={0,1}¥ - {0: M — {0,1} | Vz € M, 0(z) =0},

is called hyperoperation on M.
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78. Definition. An application
o: MxM — F*(M)=[0,]™\{0: M — [0,1]|Vz€M, 0(z)=0}

is called f-hyperoperation (fuzzy hyperoperation) on M.
For any (a,b) € M?, H C M, H # 0 and ¢ € (0, 1], we denote:
adb={z e M| (aeb)(z)# 0},

adH=|Jadh Hoa= |Jr®Da
heH heH

a®b={z e M| (aob)(z)=1},

a®@ H = Ua®h, H®a= Uh@a
heH heH

ae.b={zxec M| (aob)(z)> e},

ae. H = Uaoeh, He.a= Uhoea.
heH heH

The following situations are possible:

Rl) VaeM, aeM =Xy =Mea,
where Xps : M — [0,1] and Vz € M, Xp(z) = 1;

R2) VaeM, adM=M=M®daq;

R3) VaeM, a®M =M =MQa;,

R4) Ve €(0,1], Vae M, ae. M =M = M e_a.

79. Definition. A nonempty set M, on which is defined a f-
hyperoperation  : MxM — F*(M) which satisfy the associa-

tivity law and the reproductibility R; is called a f;-hypergroup (for
i €{1,2,3,4}).

80. Proposition. Let (M,0) be a hypergroup. If one defines

o MxM — F*(M)
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byaeb: M — [0,1] : if z € aOb, (aeb)(z) =1, ifz ¢ aOb,
(a e b)(z) =0, then one obtains a f;—hypergroup (i € {1,2,3,4}).

Proof. For any (a,b,c) € M3, we have

(asb)ed(x)= sup {(hec)(@)}= sup{(hec)()},
(aeb)(h)#0 h€alb

so if z € (a0b)Oc, [(a @ b) o ¢|(z)=1, if z¢(allb)Oc, [(a o b) o c|(z)=0.
Similarly, one obtains: if z € aO(bOc), [ae (bec)(z) = 1, if
z¢al(bOc), [ae(bec)](z)=0.

Therefore, the associativity of ”e” holds.

Moreover, we have:

a®M= {Ja®m= |J {z|(aem)(z)=1}= |JaOm=M.

meM meM meM

In a similar way, one proves: M = M ® a, then < M, e > is a f3—
hypergroup. Similarly, we can verify the statement for the other
hyperoperations. n

81. Proposition. If < M,e > is a f;—hypergroup (for an i €
€ {1,2,3,4}), then < M, ® > is a hypergroup.

Proof. It is enough to prove the associativity of "@®”.
For any (a,b,c) € M3, we have:

(a®bd)®c= Ut®c= U {z|(tec)z)#£0}=

t€adb (aeb)(t)#£0

={z| sup {(tec)(z)#0}}={z|[(aed)ed(z)#0}=

(asb)()£0
={z|[ae(bec)(z)#0}=a® (bDc).
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87. Fuzzy subhypermodules over fuzzy
hyperrings

Let R be a commutative hyperring with identity, M an R-hyper-
module and L a completely distributive lattice.
If X is a nonempty set, then we denote by F(X) the set of all
fuzzy subsets of X, that is F(X) = {p | u: X — L is a function}.
We present here some results, about fuzzy subhypermodules
over fuzzy hyperrings, obtained by M.M. Zahedi and R. Ameri.

82. Definition. Let p € F(R). We say that u is a fuzzy subhyper-
ring of R if the following conditions hold:

(i) Y(z,y) € R?, Vz € x4y, p(2) > p(z) A py);
(i) Yz € R, p(—z) > p(z);
(iii) ¥ (z,y) € R?, p(zy) > p(z) A p(y).

We denote by FR(R) the set of all fuzzy hyperrings of R.

83. Theorem. Let u € F(R). then u is a fuzzy hyperring if and
only if any nonempty level subset puo, = {z € R | u(z) > a} isa
subhyperring of R, where o € L.

Proof. Let 4 € FR(R) and p, be nonempty. Let z,y be in u, and
z € x —y. Since p(z) > p(z) A p(y) > o, it results z € p,, whence

Similarly, from p(zy) > u(z) A p(y) > «, it follows zy € .
Therefore, p, is a subhyperring of R.

Conversely, let us suppose that any nonempty p, is a subhy-
perring. For (z,y) € R? and z € z + y, set a = pu(z) A u(y). Then
T+ 2z C pto. Hence, Vz € z+y, u(2) > p(z) A ply).

Similarly, we obtain p(zy) > wu(x) A u(y). For z € R, set
a = p(z). Then = € py, S0 —x € pq, that is p(—z) > a = u(z).

Therefore, i is a fuzzy subhyperring of R. n
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84. Definition. Let V € F(R). We say that V is a fuzzy hyperideal
of R if it satisfies the following conditions:

(iy V(z,y) € R, Vz ez +y, V(z) > V(z) AV(y);
(i Yz € R, V(—z) > V(z);

(iii) V(zy) > V(z) vV V(y).

We denote by FI(R) the set of all fuzzy hyperideals of R.
The following theorem can be proved in a similar way as the
above theorem.

85. Theorem. LetV € F(R). ThenV is a fuzzy hyperideal of R if
and only if any nonempty V, = {z € R | V(z) > a} is a hyperideal
of R, where a € L.

86. Definition. Let § € F(M) and V € FI(R). We say that fis a
V~fuzzy subhypermodule of M if and only if the following conditions
hold:

1°) V(z,y) € M2, Vz ez +y, 6(z) > 0(z) A(y);

2°) Vz € M, p(—z) > 0(z);

3°) Yz € M, Vr € R, O(rz) > V(r) A b(z).
We denote by Fm¥(M) the set of all V-fuzzy subhypermodules
of M.

87. Theorem. Let§ € F(M) andV € FI(R). Then § € Fm%(R)
if and only if any 6, = {z € M | 8(z) > a} is a canonical hyper-
group of M, where o € L. Particularly, if V, is nonempty, then 0,
15 a Vy—subhypermodule of M.

Proof. Let any norempty 6, be a subhypergroup of M. By
Theorem 83, the conditions 1°) and 2°) are satisfied. Thus 6 is
a subhypergroup of M. If V, is nonempty and = € 8,, r € V,, then
O(rz)=>V(r) A 6(z)>a. Hence 6 is a fuzzy subhypergroup of M.
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Conversely, let 8 € Fm%(M) and 6, be nonempty, where
a € L. By Theorem 83, it follows that 6, is a subhypergroup of
M. Moreover, if V, is nonempty, then for z € 6,, r € V,, we
have: 8(rz) > V(r) A 8(z) > a. Hence rz € 6,. Therefore 8, is a
V,-subhypermodule of M.

88. Definition. Let a 0 be a nonconstant V-fuzzy subhypermo-
dule of M. We say that 0 is weakly fuzzy primary (prime) subhy-
permodule if 6(ra) > 0(a) implies that In > 1, such that Vz € M,
6(r"z) > O(ra) (respectively, 6(rz) > 0(ra)).

89. Proposition. Let N be a proper subhypermodule of M. Then
Xn is weakly fuzzy primary (prime) V-fuzzy subhypermodule of M
if and only if N is a primary (prime) subhypermodule of M.

Proof. Let N be a prime subhypermodule of M. Thus N # M
and Xy is nonconstant. Let a € M and r € R, be such that
Xn(ra) > Xn(a). Then Xy(ra) = 1 and Xy (a) = 0. Hence, Vz € M,
Xn(r"z) > Xn(ra). So Xy is weakly fuzzy prime.

The proof is similar if N is primary.

The converse is immediate. n

90. Theorem. Let 6 be a V-fuzzy subhypermodule of M, 6(0) =
=V(0) =1 and L = [0,1]. Then 0 is a weakly fuzzy primary
(prime) subhypermodule if and only if every 6, is a primary (prime)
V;-subhypermodule of M, Vt € [0, 1].

Proof. Let 8 be a weakly fuzzy primary (prime) subhypermodule
of M. Let r € V, and a € M such that ra € 6, and a ¢ 6;. Then
6(ra) > t and 6(a) < t. Since 0 is weakly fuzzy primary (prime),
it follows that In > 1, such that Vz € M, 0(r"z) > 0(ra) > t
(respectively, Vo € M, 6(rz) > 6(ra) > t).

Conversely, suppose that 6, is primary (prime) V;—subhyper-
module, Vi € [0,1]. Let r € R and a € M, such that 6(ra)>0(a).
Set t=0(ra). Thus ra €6;, but a ¢ 6;. Since 6; is primry (prime),
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it follows that 3n > 1 such that Vo € M, 8(r"z) > t = 6(ra)

(respectively, Vz € M, 8(rz) >t = 0(ra)).
Therefore, 6 is weakly V-fuzzy primary (prime).

§8. On Chinese hyperstructures

Some Chinese mathematicians (see for instance [244}, [435]) have
developed an interesting theory of the groups which have as sup-
ports, subsets of the set of non empty subsets of a group G. These
Chinese structures have been derived from the fuzzy subset theory.

In this paragraph another connection between these groups
(called HX-groups) and hyperstructures is established and ana-
lyzed. From every HX-group a hypergroupoid is obtained (by P.
Corsini) which is always a H,-group and in some case, a join space.
Another connection had already been emphasized in [70].

Let us remind some definitions.

I. An H,-group is a hypergroupoid < H;o > such that

a) V(a,z,y) € H?, (zoy)ozNzo(yoz) #0

b) it is a quasi-hypergroup, that is
Va € H? aoH = HoH = H.

II. An Hy-group is an H,-group < H;o > such that there is a
group operation < - > so that V(z,y) € H?, we have

T -y € ToY.

III. Let < G;- > be a group and P*(G) the set of non empty
subsets of G. An HX-group is a non empty subset H of
P*(G) which is a group with respect to the operation:

V(A,B) € P*(G) x P*(G), A-B={zy|z€ A, y<e B}.
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91. Definition. Let G be an HX-group with G as support and
E as identity. We call Chinese hypergroupoid the hyperstructure
< G*;8 >, where G* = |J A, and V(z,y) € G*xG*, zb6y =

Aeg
- U 4B
A>z,Bdy
{A,B}CG

SetVez e G*, a(r)={A]Ac G, Adz}and A(z) = | 4
A€a(z)

92. Lemma. V(z,y) € G* x G*, we have

zdy = A(z) - A(y).

Proof. Indeed, if z € 6y, then A, B exist in G such that z € A-B,
A >z, B >y Weclearly have A C A(z), B C A(y) whence
zoy C A(z) - A(y).

On the converse, set w € A(z) - A(y). Then A, B exist in G
such that we€ A- B, A3z, B>y whence A(z)-A(y) Czéy. m

93. Theorem. The hypergroupoid < G*; 6 > is an H,-group.
Moreover, it is clearly an Hy-group [440].

Proof. Let us see first that it is a quasi-hypergroup. Indeed,
V(a,b) € G*2,V (A, B) € G xG such that A > a, B 3 b, there exists
X € G such that A= B X; follows a € B- X. Therefore Vz € X,
we have a € boz.

By the same way we find y € G such that y € Y. We have
a €yadb.

Let us prove now that < G*; 5> satisfies the condition

(roy)oznzd(ydz)#0.
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V(z,y,2) € G*, we have

(zdy)62=(A(z)- A(y)) 62 =

() () = L)

= U AyAz D (A1Az)A;s

Audu€e Al A}, Al 5z, Al Dy, A3dz
V(A;, Az, A3) € G such that A; >z, A2 Dy, A3D 2

Td (y o Z) = U AIAU . A](A2A3)

A13z, AyDVEAZAG

for V(A;, As, A3) € G® such that A; >z, A3 Dy, A3 D 2.
Therefore < G*; 6 > is an H,-group. n

94. Proposition. If G is an HX-group such that
(1) V(A,B)eGxG, ANB#0 = A=B,
then < G*; 8 >isa hypergroup.
Proof. It is enough to remark the condition (1) implies Vz € G*,
ja(z)| = 1.
So < 6 > is associative.

Therefore, since < G*; 6 > is a quasi-hypergroup, it is a hyper-
group. ]

95. Proposition. Let G be an HX-group, then < G*; 6 > is a
regular reversible H,-group, moreover it is feebly quasi—canonical.

Proof. Indeed, Vp € E, Vz € G*, we have

zop=A(z)- Alp) D A(z)- E D A(z) > z.
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Moreover, Vz € G*, Vy € A™! for z € A € G we have
2oy D A(x)-A DA -A1=E.

Finally, if a € béc = A(b) - A(c) then W e |J B, 3de |J C
Bea(b) Cea(c)

such that a = b/'¢’. Follows 3A € a(a), 3B’ € a(b), 3C’ € a(a) such
that A = B'C’; follows B' = AC'~! where C'C'"'=C~'C = E.

Hence V' € A(a) - A(¢"), V' € C'~! from which b € a8¢” and

d €i(c). n

96. Proposition. Let G be an abelian HX-group such that the
condition (1) is satisfied. Then < G*; 8 > is a join space and a
feebly quasi—canonical hypergroup.

Proof. We shall denote the operation of G by "+”.

Set € a/bNc/d, then z € G* exists such that a € z6b = z+ B
where a(b) = {B}, a(z) = {X} and ¢ € z6d = X + D, where
a(d) = {D}. Then if a(a) = {A}, a(c) = {C}, wehave A = X + B,
C =X+ D, whence D = - X + C. Follows

A+D=X+B+(-X)+C=B+C+ X +(-X)=

< G*; 6 > is feebly canonical by Proposition 4. n

97. Proposition. Let < G3};6; > and < G3;6; > be Chinese
hypergroupoids. Then the cartesian product < G} x G3;0 > with a
product defined

(T1, T2)o(Y1,¥2) = (T1 611,71 8272)

is again a Chinese hypergroupoid.
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Proof. Indeed,

(161y1,Z20292) =

= U (Al . Bl) X U (A2 . Bz) ES

Ai1€a(z1), Bi€a(y1) Az€a(x2), B2ea(y2)

- U (A1, A3) o (B1, B) = (21, %2) 6 (y1, Y2)

Vi, Ai€a(x;), Bi€a(y:)

where < 6 > is the hyperoperation corresponding to the structure

of HX-group in Gy X G, defined by G = {(A4;1,A42) | A € G;}. =

§8. Hyperstructures associated
with ordered sets

In this paragraph some new hyperoperations are introduced in a
different context and analyzed. The setting is as follows. In the
place of the membership function p : U — [0, 1], we have a function
A from a finite universe H to a totally ordered set < V; <>.

We shall suppose in the following U to be a non empty finite
set, A to be a function from U to a totally orderd set < V, <>. We
shall denote, for V(z,y) € U?

A(a;) \% A(y) the maximum between A(:c) and A(y) and
A(z) A A(y) the minimum between A(z) and A(y).
These results have been obtained by P. Corsini.
We consider the following hyperoperations 7, ...,7; and we
shall analyze their properties.
Let be V (a,b) € U?

m) aéb ={zeU|A(z) < Aa) V A(b)}
m) asb={ycU|A(y) > A(a) v A(b)}
n3) a;)\b = {u eU | A(u) < A(a) /\Av(b)}
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m) adb={veU|A(v) > A(a) A A(b)}
98. Theorem.
1) The hypergroupoids 1m1), 12), 13), Na) are associative.
2) m), 1m2), M3), Na) are endowed with identities.

3) m), ma) are hypergroups.
Proof. 1) We can remark that V (a,b, c) € U? we have

(aSb)c ={z e U|A(z) < A(a) VA(b) V A(c)} =
=ad(b3c)

(ag8b)gc ={ycU|A(y) > A(a)vVA®D) Vv Alc)} =
=ag(bsc)

(@8b)8c ={zeU|A(z) > A(a) NA(b) A A(c)} =

ad(bdc)

{ue U] Au) < A(a) A Ad) A A(0)} =

I

(asb)dc =
<<
zag(bja\c)
2) Set

o : A(zo) = min{A(z) | z € U}

1 : A(z)) = max{A(z) | z € U}
We have clearly that zy is an identity for both < U, é > and
< U; § >.
z1 is an identity for both < U; § > and < U; § >.

3)V(a,b)EUwehaveaEaébandaea§b. [



226 PIERGIULIO CORSINI and VIOLETA LEOREANU

99. Theorem.
1) U coincides with the set of identities of < U, § > and

>
<U;2>.

2) The set of identities of < U;
The set of identities of < U,;

> is A1 A(xo).
> is A1 A(z,).

>0A <0V

3) <U; § > and < U, § > are regular reversible hypergroups.
4) < U, § > and < U, § > are not hypergroups.

Proof. 1) Indeed Vz € U, Yu € U, we have
A(z) < A(z) V A(u), A(z) > A(z) A A(u)
whence x € :c§u, NS w?u.
2) Set z € A(xo), v € A(z1), z € U. Then

A(z) = A(z) V A(z) whence z € z §z

A(z) = A(z) A A(v) whence z € = §v.
On the other hand, if y ¢ A(xo) we have

zo & To §y

It follows that y is not an identity for 7). Hence A~1A(zg) =
= EJ = the set of identities of 72). By a similar proof one sees that

A1A(z,) = EX.

3) It follows from 1).

4) < U; § > < U; § > are not hypergroups.
Indeed, if A(b) < A(a), x does not exist such that b € aé:c that is
A(b) > A(a) V A(z). Similarly, if A(b)>A(a), y does not exist such
that A(b)<A(a) A A(y), that is a€b §y. L]
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100. Definition.

I. We call quasi—join space a commutative semi—hypergroup which
satisfies the condition

j) a/bNec/d # 0 => aodNboc # §.

II. We call semi—join space a semi-hypergroup which satisfies the
condition (j).

< > .
101. Theorem. < U; g >, < U, 0 > are join spaces, < U; § >,

< L
< U; O > are semi-join spaces.

Proof. Set V (a,b) € U?

aAb=a if and only if A(a) < A(b)
aAb=>b ifand onlyif A(b) < A(a)
aVb=a if and only if A(a) > A(b)
aVb=1"> ifand onlyif A(b) > A(a)

Follows A(a Ab) = A(a) A A(b), A(aV b) = A(a) V A(b).
€1) Set (a,b,¢,d) € U4, y=aAc. We have
y<a<aVd whence yEaéd
y<c<bVc whence yebéc
< <
So aedﬂbec;ﬁ 0.
Hence < U; § > by 3) Theorem 98 is a join space.
€4) By a similar proof one sees that
aVceaddnbde.
A A

So, by 3) Theorem 98 < U; § > is a join space.
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£2) Set x € a/bNc/d. Then
a€bSz={z| A(z) > A(b) v A(x)} and
cedsz ={z| A(z) > A(d) V A(z)}
Follows
AlaVe)=A(a) v A(c) > A(b) V A(d) v A(z) > A(b) V A(d).
Hence
A(ave)> A(e)vAd) whence aVceadd
) >

Alave)> A(b)V A(c) whence aVce béc.

Therefore < U; § >, by Theorem 98 is a quasi—join space.

€3) By a similar proof one sees that if in < U;§ >, a/bNc/d#0

then a A c € a§dﬂb§c # (. Therefore < U;§ > is by
Theorem 98 a semi—join space. ]



Chapter 6

Automata

The definition of an automaton, we shall present here,
has its origins in a paper of Kleene (1956). The title ”Re-
presentation of events in nerve sets and finite automata” of
Kleene’s paper gives an idea of its motivation.

The concept of automaton had led to important results,
both in mathematics and in theoretical computer science.

Automata are in fact very familiar objects, in the shape
of coin machines.

The last twenty years have developed a body of research
known under the names of Automaton Theory and Formal
Language Theory.

We mention Biology between the fields which have sig-
nificant connections with Automaton Theory.

Here, we have presented the connections of Automaton
Theory and Language Theory with another field, known as
Hyperstructure Theory.

Using tools and methods of Hyperstructure Theory, G.G.
Massouros gave a new proof of the famous Kleene’s Theo-
rem, which states that:

”A subset of the set of words M* is acceptable
from an automaton M if and only if it is defined
by a regular expression.”

229
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As follows, an association is attempted between Automaton
and Language Theory and Hyperstructure Theory.

In the following sections, we shall present some important re-
sults on these topics, obtained by G.G. Massouros and by G.G.
Massouros & J. Mittas (see §1, §2) and then by J. Chvalina & L.
Chvalinova (see §3).

§1. Language theory and hyperstructures

Let M be an alphabet, M* the set of words defined over M (M*
is the closure of M), A the empty word. The set M* endowed with
the operation of concatenation of the words, that is z -y = zy, is
a monoid, with neutral element the empty word.

The length £(z) of a word x € M* is the number of its letters,
so £(A) =0 and V (z,y) € M*xM*, £(zy) = {(z) + £(y).

Let us define on M* the following hyperoperation:

V(z,y) € M*xM*, z+y = {z,y}.
1. Proposition. < M*,+ > is a join space.

Proof. Indeed, < M* + > is a commutative hypergroup and
moreover V (z,y) € M*xM*, we have

_ » _Jz fx#y
zfy={z€eM |$€y+z}—{ M, if gy

whence it is clear that V (z,y, 2,w) € M**, the following impli-
cation holds:

zfyNzfw# D= zc+wNy+z#£0.
]

2. Definition. A hyperringoid is a structure < H, +,- >, where
< H,+ > is a join space, < H, - > is a semigroup and the multipli-
cation ”-” is bilaterally distributive with respect to the hyperope-
ration 74",
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3. Remark. < M*, +,- > is a unitary hyperringoid.

Indeed, < M*,+ > is a join space, < M*,- > is a monoid
and the concatenation is bilaterally distributive with respect to the
addition.

Let us consider now the following binary relation L on M*:
Ly <= {(z) = {(y).

This is an equivalence, called length equivalence.
It is possible to verify the following:

4. Proposition.

(i) < M*/L,® > is a join space, where
V(z,9) € (M*/L)?, 2@ 7 ={z,7}.

(i) < M*/L,®,® > is a unitary hyperringoid, where ¥ (Z, ) €
(M*/L)?, £©F = Ty and the multiplicatively neutral element
is A= {A}.

(i) If we set V (z,y) € M*2, By = ZU Y, then < M*, B > is a
join space.

(iv) < M*, B, > is a unitary hyperringoid, where ”-” is the con-

catenation and the multiplicatively neutral element is .

5. Definition. A join space < H,+ > is called fortified join space
if the following conditions hold:

(i) there is a unique neutral element denoted by 0 (the zero of
H), that is 30 € H, such that Vo € H,z € 0+ z;

(ii) every element z of H has exactly one inverse —z, that is
Ve H, A —z € H,suchthat 0 € 2+ (—z) = = — x;

(iii) the hypergroup < H,+ > is partially reversible, that is:
V(z,y,z) € H% if z € z+y, then eithery € z—z orz € z—y.
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6. Definition. Let < H,+ > be a join space. If the following
axioms are satisfied:

(i) there exists a unique neutral element 0, such that every non-
zero element = of H has a nonempty set i(z) of nonzero in-
verses of z in H (with respect to 0);

ii) the hypergroup < H,+ > is partially reversible, that is:
yp
a€z+y= (3 €i(zx), y€a+z' or I €i(y), € a+y)

then < H,+ > is called polysymmetrical fortified join space.

7. Definition. A hyperringoid (H,+,-) is called fortified if its
additive structure is fortified and its zero element is a bilaterally
absorbing element for the multiplication, that is

Vxe H, 0x=20=0.

Let us adjoin to the set M* an element 0, considering it as a
zero element, with the properties:

Vz,0z=20=0, 0+ 2= {0,z}, z+ z = {0,z}.
Let M = M* U {0}. We obtain the following
8. Proposition. < M,+,- > is a fortified unitary hyperringoid.

We notice that if the length £(0) of the zero word were the
natural number 0, then the length equivalence in M would not be
compatible with respect to the multiplication. Indeed, Yz € M,
since 0 = {0, \}, we would have 0 - & = 0z = Xz, so 0 = Xz, which
is absurd (where Vz € M, , is the equivalence class of ).

But, we can define the order of a word z (ord z) on M in the
following manner:

Vz e M*, ordz = ¢(z)+ 1 and ord0 = 0.
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Let ~ be the following relation on M:
x~y<=ordz =ordy.

"~ is an equivalence relation, which is called order equivalence.
Its restriction on M™* coincides with the length equivalence on M™*.
Similarly as in Proposition 4, we can define ® and ® on M/ ~ . The
relation ”~” is compatible with respect to both the hyperoperation
and the operation of < M, ®, ® >. Thus we have the

9. Proposition. < M/ ~,®,® > is a unitary fortified hyper-
ringoid.

82. Automata and hyperstructures

10. Definition. An automaton is a 5-tuple (S, M, Sy, F,t), where
S is a finite set of states, M is an alphabet of input letters, Sy, and
F' are the set of the start and final states, respectively and t is a
state transition function.

If the automaton is deterministic, then t has the domain SxM
and range S. If the automaton is nondeterministic, then t has the
domain SxM and range P(S).

We shall define on S several hyperoperations, such that we
obtain hypergroup structures on S.

I. The attached order hypergroup

We suppose that there exists a conventional start state sy, so
that every state s € S is connected to sy (see Definition 14).

11. Definition. The order of a state s € S is the natural number
£+ 1, where £ is the minimum of the lengths of words which lead
from the conventional start state sy to s.

We denote the order of s by ord s.
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Let us define now on S the following order equivalence:

if (51, 82) € 52, 51 ~ 8o &= ord s; = ord s5.

Forany s€ S, let §={s' € S| s~ s}
Let us consider the following commutative hyperoperations

on S:

1° V(Sl,Sg) € S2, 81 + 82 = ¢

52,

U s
ord s<ord s;

/
30,

S2,

U s

if ords; < ord s,

if ords; =ordss #0

if 81 = 82 = 8¢r.

if ords; < ords,

if ords; = ord s, and

ord s<ord s3

U &

\ ords<ords;

2°V(s1,82) € 8%, s1+ 52 = ¢ Sy # 81 # 82 # Sy

if 81 = 82.

(3, if 0 ords; < ords,
8, if ords; = ords, and
0stord s<ord s
So’ 81 S So
3°V(31,82) € Sz, 81+82 = 7& 7# 52 7 S0
U §, if So 75 81 = 82
ord s<ord s1
| S2 = S2 + So/, if 81 = S¢or.

In each case, < S,+ > is a canonical hypergroup.

I1. The attached grade hypergroup

Let (S, M, S, F,t) be a deterministic automaton.
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12. Definition. We call grade of a state s € .S and we denote it by
grad s, the set {x € M™* | t*(s,z) € F}, where t*: SxM* — S is
the extended state transition function, which is defined recursively
as follows:

Vs €S, Yae M, t*(s,a) =t(s,a);
VseS, t*'(s,A) =s;
Vse S, Ve e M*, Va e M, t*(s,az) = t*(t(s,a), z).

We define the relation R on the set of states S, as follows:
s1Rse <= grad s; = grad ss.

This relation is an equivalence relation on S, called grade equi-
valence.

Let us denote by 3; the equivalence class of s,, with respect to
R.

Let us define on S the following hyperoperation

51+31=§1U§2.

Then (S, +) is a join space.

Now, let us suppose that the automaton (S, M, S, F,t) has
only one final state, the state sr, otherwise we endow it with a
conventional one.

We define on S the following hyperoperation ”+":

§1U§2, if §17‘5§23.nd817é87’7é82

S1+ 82 =
e {§1U{ST}, if 5 =5

Then < S,+ > is a polysymmetrical fortified join space, called the
attached grade hypergroup of the automaton.

13. Remark. If in a polysymmetrical fortified join space H, the
family {S(z)},en forms a partition of H, then the relation p defined
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by: zpy <= S(z) = S(y) is an equivalence relation on H and the
factor set H/p, endowed with the hyperoperation

C.+C,={C,|T.uT,)

becomes a fortified join space.

The grade notion is very important for the creation of the mini-
mum automaton which accepts the same language as the initial one.
If in an automaton there exist two states of the same grade, then
it makes no difference, for the process of reaching the final state,
whether we are on one or on the other. By Remark 13, if the at-
tached grade hypergroup is polysymmetrical, then we can construct
a fortified join space and so, its corresponding automaton has less
states than the original one, but it accepts exactly the same lan-
guage as it.

ITI. The attached hypergroup of the paths

14. Definition. The state so of S will be called connected to the
state s, of S if there exists € M*, such that s; = t*(s1, z).

If z consists only in one letter, then the state s, is called suc-
cessive to s;.

Notice that if s, is connected (successive) to s;, this does not
imply that s; is connected (succesive) to s,.
We define the following hyperoperation on the set of states S:

V(xhx?) € S27
{s € S| 3(z,y) € M*? such that s = t*(s;,z) and

81089 = sz =t*(s,y)}, if s, is connected to s
{s1, 82}, if s, is not connected to s;.

Then (S, 0) is a non—commutative hypergroup.
Using this hypergroup, an important theorem of Languages
and Automaton Theory can be proved by tools and methods of
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Hypercompositional Structure Theory: the Theorem of Kleene (see
[258]).

IV. The attached hypergroup of the operation

Now, we shall point out that an automaton can be in a certain state
in a certain moment (clock pulse). In other words, we consider
"time” as one of the factors that are involved.

Therefore, it is convenient to consider the cartesian product
SxIN (S being the set of states).

If the automaton is in the state s during the clock pulse ¢, we
write (s,t).

15. Definition. An element (s,t) of SxIN is called activated if
after ¢ clock pulses, the automaton can be found in the state s.
We say that (s2,7) is succesive to (si,t) if sq is succesive to s; and
r=t+1.

We say that (sg,7) is connected to (s,t) if s, is connected to
stand t < r.

Let A € SxIN be the set of activated elements and tA* the
generalization of the extended state transition function t*, that is
tA* : (SxIN)xM* — SxIN, tA*((s,t),z) = (t*(s,z),t + |z]),
where |z| is the length of the word z. We define on A the following
hyperoperation:

{tA*((s1,m),z) | z € Prefixr and
tA*((Sl, m)v 7") = (827 n)}7
if (s2,n) is connected

(s1,m)o(sz,n) = to (s1,m)

{(s1,m), (s2,m)} otherwise.

16. Proposition. (4,0) is a non commutative hypergroup.
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Proof. 70” is associative. Indeed, if (s;,n) is connected to (s;, m)
and if (sg,p) is connected to (s;,n), then we have:

((si,m)o(s,m))o(sk, p) =
= {tA*((s;, m), ) | z € Prefixr, tA*((s;, m), 7)=(s;,n) }o(sk, p)=
= {tA*(tA*((si;,m), z),y) | = € Prefixr, tA*((si,m),r) = (s,n),
y € Prefix g, tA*(tA*((s;,m), z),q) = (sk,p)} =
= {tA*((s;,m),v) | v € Prefixw, tA*((s;, m), w) = (sk,p)}-

On the other hand,

(si,m)o((sj,n)o(s, p)) =
= (s;, m)o{tA*((sj,n), z) | z € Prefixr,tA*((s;,n), r)=(sx,p) }=
= {tA*((si,m), 2) | z € Prefixu,tA*((s;, m),u) = (p,p) or
tA*((s;,m),u) = tA*((s;,n), z), x € Prefixr,tA*((s;,n),7) =
= (g, p)={tA*((si,m),v) | vE€Prefixw, tA*((s;, m), w)=(sx,p)}
Now, suppose that (s;,n) and (s, p) are connected to (s;, m),
and (s, p) is not connected to (s;, n).
Then
((si,;m)o(s5,n))o(sk, p) =
= {tA*((s;,m), z) | x € Prefixr, tA*((s;, m), r)=(s;,n)}o(sk, p)=
= ((si,m)o(s5,n))U((si, m)o(sk, p)) and
(si,m)o((s5,n)o(sk, p)) =
= (si,m)o{(s;,n), (sx,P)} = ({51, m)o(s;, n))U((s:, m)o(sk, p))-
Let us suppose that (s;j,n) is connected to (s;, m) and (sk,p)

is not connected to anyone of the other two.
Then

((Siv m)o(sj, n))o(skv p) =
= {tA*((si,m), z) | z € Prefix r,tA*((s;, m), r)=(s;j,n) }o(sk, p).
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The element (sg,p) is not connected to anyone of tA*((s;, m), ),
otherwise it would result that (s, p) is connected to (s;,m), which
is absurd.

Therefore

((s5,m)o(s5,m))o(sk, p) =
—{tA*((s5,m), z) | o€ Prefixr,tA*((s;,m),r)=(s;,7)} U {(sk,p)}.
On the other hand,
(s, m)o((s;,n)o(sk, p)) = (s, m)o{(s;, ), (sk,p)} =
= ((s::m)o(s5,n))U((si, m)o(sk, p)) =
= {tA*((s;,m), z) | x € Prefixr, tA*((s;, m), 7)=(s;, n) }U{(sx,P)}-

If the elements (s;,m),(s;,n) and (sg,p) are not connected,
then

((si,m)o(s5,m))o(sk, ) = {(81,m), (55, ) }o(s%,p) =
= ((8:, m)o(s, p)) U ((s5,m)o(s, p)) = {(s:,m), (s5,1), (sx, )}

and similarly we obtain

(s: m)o((s5, n)o(sk, p)) = {(si,m), (s5,n), (s, P)}-

” _n

Therefore ”0” is associative.
Moreover,V (s;, m) € A, we have

(85, m)oA = A = Ao(s;,m).
Notice that "o” is not commutative. n
Using this hypergroup, all the states at which the automaton

can possibly be found, at a given moment ¢, may be effectively
determined.
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83. Automata and quasi—order
hypergroups

In the following, some basic properties of automata are described,
using their corresponding hyperstructures.

From now on, we shall denote an automaton by a triplet
(S, M, 7), where S is the set of states, M the alphabet (M # 0)
and 7 = t* : SxM* — S is the extended state transition func-
tion, satisfying the two conditions: 7(s,A\) = s, Vs € S and
7(s,ab) = 7(7(s,a),b), Vs € S, V(a,b) € M*2.

A subautomaton of the automaton (S, M,7) is an automaton
(So, M, 19), where Sy C S; 79 is the restriction of 7 on SyxM* and
Vsg € Sp, Va € M*, T(So,a) € So.

If S; C S, let us denote:

7(S1, M*) = {7(s1,a) | 51 € S1, a € M}

and 7(s;, M*) instead of 7({s1}, M*).
We shall consider only the automata with nonempty state sets.

17. Definition. A nonempty subautomaton (Sp, M, 7) of an au-
tomaton (S, M, ) is called separated if 7(S — Sp, M*) N Sy = O.
An automaton, with no separated proper subautomaton is called
connected. An automaton (S, M, 7) is called strongly connected if
V(s,t) € S?, Ja € M*, such that 7(s,a) = t.

18. Definition. An automaton (S, M, 7) is called retrievable if
Vse S, Vae M* 3be M*, such that 7(s,ab) = s.

It holds the following result:

19. Theorem. An automaton is retrievable if and only if it is a
union of its strongly connected subautomata. ([17]).

With any automaton (S, M,7T) , we can associate a quasi—
order hypergroup (S,o) (that is V (s,t) € S?, we have s € s?=s3
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and sot=s2 U t?) in the following manner:
sot =T7(s, M*)UT(t, M").

Indeed, V (s,t) € S?, {s,t} C sot, so sot # {).
Moreover, sot = s? U t?, since s* = 7(s, M*). We also have:

83 — U Sou:T(S,M*)U U T(U7M*) =

uer(s,M*) u€T(s,M*)
= s U{7(7(s,a1), a2) | (a1,02) € M*?} =
=s2U{r(s,maz) | a1as € M*} = s2U (s, M*) = s> Us? = s,

Notice that V (s,t) € S2, we have
sot = p(s) U p(t), where p C S?
is defined as follows:

p is the transitive closure of p, where p C S? and
spt <> Ja € M : 7(s,a) =t.

20. Definition. A quasi-order hypergroup < H,o > is called an
order hypergroup if V (a,b) € H?, the following implication holds:

a®=b = a=0».

21. Definition. A commutative hypergroup < H,o > is called
inner irreducible if for every subhypergroups Hy and H, of H, such
that H = HyoH,, we have H; N Hy # 0.

Now, let us see some relationships between some properties of
automata and of their corresponding hypergroups.

22. Theorem.

1) An automaton (S, M, 1) is connected if and only if its state
hypergroup (S, o) is inner irreducible.
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2) An automaton (S, M, T) is strongly connected if and only if its
state hypergroup (S, o) satisfies the conditionVs € S, S = s2.

3) An automaton (S, M, T) is retrievable if and only if for any
inner irreductble subhypergroup (K, o) of the state hypergroup
(S, 0), there exists k € K, such that K = k?.

Proof. 1) ”==>" Let us consider (S, M, 7) a connected automaton
and Sj, Sz subhypergroups of (5, o), such that S = 5;0S;.

We have Vs, €Sy, Va€ M*, 7(s1,a) €7(s1, M*) = 8108, C Sy,
so (S1, M, 1) is a subautomaton of (S, M, ), where 1 = 'r/S1 < M**
Since (S, M,7) is connected, it follows 7(S — S;, M*) N S; # 0,
whence 3(t1,12) € (S — S1)xS1, Ja € M*, such that 7(t1,a) =t2 €
€ 7(ty, M*) = tjoty. Since S = S;085; it follows that I(u,v) €
€ S1%.Ss, such that ¢t; € uov = 7(u, M*) U (v, M*).

We have 7(u, M*) = wou C S;,7(v,M*) = vov C S, and
t; € S — 81, s0 t; € vov, hence tz € t10t; C (vov)o(vov) = viov =
=122 C S,. Then t, € S; N Sy, that is S; N Sy # B, and so it follows
that the state hypergroup (.S, o) is inner irreducible.

7<«<=" Now, let (S, o) be an inner irreducible hypergroup and
suppose that the automaton (S, M, 7) is disconnected. Then there
exists a separated proper subautomaton (S, M, 1y) of (S, M, 7), that
means

T(S—Sl,M*)ﬂSl 20, SO T(S—Sl,M*) C S"-S],

that is (S — S, 0) is a subhypergroup of (S, o).

Since 71(S1, M*) C Sy, it follows that (Sy, o) is also a subhyper-
group of (S, 0).

Moreover, since Vs € S, 7(s, A) = s it follows that 7(S;, M*) =
=S and 7(S — 51, M*) = S — S;. We have (S — S1)0S5; € S. On
the other hand, if s € §—.5;, then we consider an arbitrary element
t of 5; and, if s € S;, we consider an arbitrary ¢t in S —.S;, We have

s € (s, M*) UT(t, M*) = sot = tos C (S — S1)0S;.
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Therefore S = (S — S1)0S1, which is a contradiction with the
fact that (5, o) is inner irreducible.

2) ”==" Suppose that the automaton (S, M, 7) is strongly con-
nected. Let s € S. We have sos C S and Vt € S, da € M*, such
that t = 7(s,a) € (s, M*) = sos, so S C sos, whence S = s2.

"<=" Conversely, for any s € S, we have S = s = 7(s, M*)
and so Vt € S, Ja € M* such that t = 7(s, a), whence (S, M, 1) is
a strongly connected automaton.

3) ”=" Let (S, M,7) be a retrievable automaton. It means
that (S, M,7) is a union of its strongly connected subautomata
(Si, M, 7;),1 € I, where S;NS; = @ for (3,7) € I?,i # j, (otherwise,
if 5;NS; # 0, we would have S; = Sj; indeed, if s € S;N.S; and ¢ is
arbitrary in S;, then Ja € A*, such that ¢ = 7,(s, a) = 75(s, a) € S},
so S; C S; and, similarly, S; C S;).

Moreover, (T', 0) is a subhypergroup of (S, o) if and only if there
is J C I, J # 0, such that T = | J.S;. The subhypergroup (T, o) of
i€J

(8, o) is inner irreducible if and only if 35 € I, such that T = ;.

Indeed, if T = U Sy and J is a subset of I, containing at least

keJ
two elements, then Vi € J, we have

S;o (USk) =T and S; N (Usk) =0,
keJ keJ

ki ksti

contradiction with the fact that (T, o) is inner irreducible.

According with 2) we obtain that Vi € I, S; = s? for any
s; € S;, therefore for any inner irreducible subhypergroup (T, 0)
of (S,0) we have T = S; for some i € I and S; = s? for any
8; € S.i =T.

”<«=" Since any inner irreducible subhypergroup (T’ o) of (S, o)
can be written as T' = t2, for some t € T it follows, according to 2),
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that (T, M, 7/T) is a strongly connected subautomaton of (S, M, 7).
On the other hand, we have:

S=Ut*= U T
tes (T,0) inner irreducible
subhypergroup of (9, o)

so the automaton (S, M, 7) is retrievable. |
In the following, we shall give necessary and sufficient con-

ditions, such that the state hypergroup (S,0) of an automaton
(S, M, 1) is a join space.

23. Proposition. Let (S,r) be a quasi-order set and (S, o,) the
quasi—order hypergroup defined as follows:

V(s,t) € S%, so.t=r(syUr(t).
Then the following two conditions are equivalent:
1) the hypergroup (S, o,) is a join space;

2) if a and b are arbitrary elements of S such that 3z € S, for
which zra and xrb, then Jy € S, such that ary and bry.

Proof. 1) = 2) Since zra and zrb it follows {a,b} C r(z), so
z€a/bNb/a and since (S, o,) is a join space, we obtain tht a?Nb?#£0),
that is r(a) N r(b) # @, whence Jy € r(a) Nr(b), that means ary
and bry.

2) = 1) Let (a,b,c,d) € S%, such that a/bNc/d > z, for some
z € S. It follows a € r(b) Ur(z) and ¢ € r(d) Ur(z).
We have the following situations:

1°) {a,c} C r(z). Then, by 2), it follows Jy € r(a) Nr(b), whence
(r(@) Ur(d)) N (r(byUr(c)) # 0, that is ao, dNbo, c # 0.

2°) a € 7(b) and c € 7(d). Then a € r(a)Nr(b) so ao, dNbo, c # .
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3°) a€r(z) and cer(d). Then cer(c)Nr(d), soao,dNbo,c #D.
4°) aer(b) and cer(z). Then a€r(a)Nr(b),soao,dNbo,c# 0.

Therefore, (S, o,) is a join space. n

24. Theorem. Let (S, M, T) be an automaton and (S, 0) the asso-
ciated state hypergroup. The following conditions are equivalent:

1) the hypergroup (S, 0) is a join space;

2) for any (s,t) € S2, for which 3u € S, such that sot C u?,
there exists v € S with the property v? C s2Nt2.

3) for any (s,t) € S%, for which 3(a,b) € M*2, Ju € S, such
that 7(u,a) = s, 7(u,b) = t, we have that I(c,d) € M*?, such
that 7(s,c) = 7(t, d).

Proof. 1)==-2) Let 7 be the quasi-order on S, which determines
the hyperoperation ”"o”. Notice that r is the transitive closure of
the relation p C S? defined as follows:

$1ps2 <= Ja € M, 7(s1,a) = s».

Let (s,t) € S?, such that Ju € S : sot C u?, that is r(s)Ur(t) C
C 7(u), whence we obtain s € r(u) and ¢t € r(u). By the previous
proposition, it follows that v € S, such that v € r(s), v € r(t).
Then r(v) C r2(s) Nr2(t) C r(s) Nr(t), that is v C s2 N2

2)==-3) Using the above defined quasi-order r, we have
VseS, r(s)=r1(s, M*).

Let (s,t) € S? such that 3(a,b) € M*?, Ju € S : 7(u,a) = s
and 7(u,b) = t. Then s € r(u) and t € r(u), whence sot = r(s) U
Ur(t) € r?(u) Ur?(u) = r?(u) C u?. By 2) it follows that Fve S
such that v2 C s2 N2, hence v € v? C r(s) Nr(t), that is srv and
trvu.
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By the definition of r, it follows that there exists (c,d) € M*?,

such that
7(s,¢) =v and 7(t,d) =,

hence 7(s,c) = 7(t,d).
3)==1) Considering the relation r defined as follows:
srt <= Ja € M* : 7(s,a) =t,

we obtain that 3) is exactly the condition 2) of the previous propo-
sition, so 3)==1). =



Chapter 7
Cryptography

For ages, cryptography has been used in military and
diplomatic communication, in order to make the meaning
of transmitted messages incomprehensible to unauthorized
users.

As Francis Bacon said, ”"The art of ciphering, half for
relative an art of deciphering, by supposition unprofitable,
but as things are, of great use”. Lately, W. Diffie and M.
Hellman [126] point out the new directions in Cryptography.

In this chapter, we have presented some hyperstructures
derived from generalized designs and some cryptographic
interpretations on hyperstructures. As being a science in a
continuous development,. ciphering can still be improved,
using a relative new theory, that one of Hyperstructure
Theory.

81. Algebraic cryptography
and hypergroupoids

The study of sending messages methods, which cannot be read by
an unauthorized person, is called cryptography.

One of the most famous cryptography code was introduced be-
fore 1500 by the Frenchman Blaise de Vigenere. This code was un-

247
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breakable for more than three hundred years. The Vigenere square
is one of the first algebraic structures of the history, probably the
first one; its ancient name was ZIRUPH. This square is isomorphic
to the additive group of residues modulo 26.

A Prussian officer broke the Vigenere code in 1860, using a
statistical text: the Kasisky text.

In few words, we explain how a message can be sent to a re-
ceiver, using an algebraic cipher system.

Let us consider a finite set A, called alphabet, a subset K of A,
called key-set and a binary operation on A, called enciphering. The
message to be sent (called cleartext) is written with the elements of
the alphabet A. Using the elements of K, we construct a so—called
keyword, writing the elements of K, one after the other, respecting
the lengths of the cleartext words. We transform the cleartext into
a ciphertext, using the keyword, in the following manner: each ele-
ment of the cleartext is replaced by the result of enciphering this
element with the corresponding element of the keyword. The ob-
tained ciphertext is sent to the receiver.

In order to reconstruct the initial message, Vk € K, Va € A,
the equation k * z = a must have a unique solution, that means
Vk € K, (k * z);ca must be a permutation of the alphabet A.

Example. Let (A, *) be a finite groupoid and K C A, such that
V(k,a) € KxA, the equation k * x = a has a unique solution in A.
Suppose
A={a,b,c,d,e, f,...,2,t} and
K ={u,v, 2,1t}

cleartext:  hypergroups have applications
keyword. uvztuvztuvz tuvz tuvztuvztuvz

ciphertext:

(weh) (x) (29) () (s (059) (257 (b0) () (04D) (25)
(txh)(uxa)(vxv)(z*e)

(txa)(uxp)(vkp)(2x€)(txi) (uxc)(vxa)(zxt) (txi) (uxo) (v¥n)(z*s)
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Using the hyperstructures, we can construct some more sophis-
ticated cryptographic systems.

This topic has been investigated by L. Berardi, F. Eugeni and
St. Innamorati and more recently, by R. Migliorato and G. Gentile.
In the following, we shall present some results of Berardi, Eugeni
and Innamorati.

1. In this case, the key-word contains two secrets: the alphabet and
the length of ciphering. The enciphering is now a hyperoperation.

Example. Let

A ={a,b,c,...,2z} and

K ={b,a,d};
the length of ciphering: 2 (corresponding to b), 1 (corresponding to
a), 4 (corresponding to d) and let us consider a hyperoperation ” %"
on A, such that Vk € K, V(z,y) € A%, we have

kxz=kxy=2x=y.

Let us consider

bxh = in
axy =t
d*xp = eres
bxe = ti
axr = n
d+*g = gand
bxr = be
axo = a
d*xu = utif
bxp = ul

cleartert: hypergroup
keyword: badbadbadb
Therefore, the ciphertext is: interestingandbeautiful.

2. Variable-size cipher system. Let (A,*) be a hypergrou-
poid and H the set of idempotents of (A, *). (h is idempotent if
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h* h = h.) The alphabet is A. We use two keys: a main key (that
belongs to A — H) and a special key (that belongs to H).

The codification consists in ciphering any clearletter m by the
secret main key k, and then, in writting the special key h after the
cipher k * m.

If the cleartext is: mymsa..mymMyyq...MsMgyy... the main key
is: kiks...ksk1ks... and the special key is: hjhs...hihihe... then, the
ciphertext is:

[k1 * my)hy * hy[ko * mo)ho * ha...[ke * my)hy * hy...
and, since ”+” is a hyperoperation, we obtain
alag...aihlblbz...bjhg...2122...Zght...

The receiver knows the special key, but he does not know the po-
sition of the special key in the ciphertext. Notice that the cipher
k * m could contain the special key h, as in the following example:

ciphertext: albdebfanm

special key: bmbm...
We have two possibilities: the ciphers could be:

al; debfan or

albde; fan.
We can avoid this situation, assuming that for every k of the main
key, the corresponding row {k * z};c4 is a Sperner family, which
does not happen in our case (indeed, we have "alCalbde” and
”fanCdebfan”). Remember that a family R of subsets of A is a
Sperner family if

V(X,Y) € R? neither X CY norY C X.

3. The next procedure is called "how to share pieces of mes-
sages”. The idea is the following one: the sender transmits the se-
cret message to two receivers using two different algorithms f and g,
respectively, such that none of them can read the message without
the permission of the other one. None of the receivers knows the
algorithms f and g, but they know an algorithm F' that computes
the secret message m by the two cipher messages f(m) and g(m),
that is they know an algorithm F', such that F(f(m), g(m)) = m.
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§2. Cryptographic interpretation of some
hyperstructures

Let us notice that hyperstructures derived from linear spaces can be
obtained; these hyperstructures have cryptographic interpretation.

4. Definition. A geometric space is a pair (P, B), where P is a
finite set of elements, called points and B is a family of subsets of
P, called blocks.

A linear space is a geometrical space for which, through any
two distinct points there is a unique block, said line.

Let us denote by L(z,y) the line through the different points
z and y of P and let us define the following hyperoperation on P:

2 — {z}, if z=y
vewert e={ I, §I5)
The hyperstructure (P, *) is a quasi-hypergroup.

Other examples of hyperstructures, associated with non-
projective linear spaces or reducible projective spaces, are presented
in [24].

Notice that, from the cryptographic point of view, it is not
very useful to consider hyperstructures having a kind of regularity,
for reasons we shall present below.

5. Theorem. A hypergroup (A,*), with A = Z,, satisfies the
following conditions:

1) V(i,7) € A2, card(z* j) =i+ 1.
2) V(i,h,k) € A%, h# k= ixh#ixk.

Ny

if and only if the hyperstructure "+” is defined as follows:

V(i,5) € A% ixj=j+{0,1,..,i}

Proof. "<=" Immediate.
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?—” Set V' (i,7) € A2, i%j = {z¢7, ..., 2;7}, where k < h =
7 < 3. Since (A, *) is a hypergroup, the conditions 1) and 2)
hold
The proof consists in the following phases:
I) We shall verify that Vi € A, 0*i = {¢}. We have

0 (i%0)=0x{z5°,..,2"°} = | (O * z’*o)
=0
But card (O* :1:;'.*0) = 1 and, by 2), it follows that the elements
0xz50, ..., 0xz*0 are different. Therefore, Vi€ A, card 0%(z%0)=i+1.
On the other hand, (0 * i) *x 0 = {zJ*'} * 0 = zJ** * 0, whence

Vie A, card((0*4) x0) = z3** + 1. Since (4, %) is a hypergroup, we
have Vi € A, z0* =i, hence Vi € 4, 0 x i = {zJ*} = {i}.

IT) Now, we shall check that
Vie A, i+0={0,..,5}.
By I), we have 0 x 0 = {0}, so
i%(0%0) =ix {0} =ix0={zh, ., al°}.
Therefore, Vi€ A, card(i * (0 % 0)) = i+ 1. '
On the other hand, (i%0)*0 = {50, ..., z2*0}*0 = O (z;.*o * O) .

=0
Therefore, Vi € A,

i+ 1 =card(i * (0% 0)) = card((¢ *0) * 0) = cardU ( w0 0)

The set (i *0) * 0 is a union of non—-empty sets. Hence each subset
of this union contains at most 1+ elements, thatisVj € {0,...,:},
card (z'*o * 0) <i+41. By 1), ( 0 4 O) has exactly x'*o + 1 ele-
ments, so Vj € {0, ...,1}, 2;*® < i. The elements 2§, ..., 23*® of i %0
are distinct, so, Vi € A, i H 0={0,..,3}.
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IIT) We prove that
V(i,7) € A%, h€{0,...,i} we have h* j Cixj.

By I) and II), V (3, j) € A?, we have

ixj=ix(0xj)=(E*0)*7={0,..,i}xj= |Jh*j

h=0

whence Vh € {0,...,i}, hxj Cix*j.
IV) We shall verify the implication:

(Vh<i, h+jehx*j)=ixj={4,j+1,....5+1}
Let h+j € hxj, for all A < 4. Then

{,d+1, i+ S Uh*jCixj.
h=0
But card(i * j) = ¢+ 1, so we have
ixj={5,7+1,..,5+i}.

V) Notice that, if V(z,5) € A%, i+ j € i * 5, then the theorem is
obtained directly from IV). So, we shall verify that this condition
holds.

VI) We prove that V(3,5)€ A2, j+i €ixj. Suppose that I(up, vy) € A2,
such that up + vo € vo * up and let v be the smallest element of A,
such that Ju; € A:uy +v ¢ v*u;. Byl), it follows v # 0. Let u
be the smallest element of A, such that

ut+vgvru.
By IV), we have

V(i,j)€ A% i<v=j+ic€i*xj=i*xj={j,j+1,...,5+1i},
Vi€A j<u==j+vevsj=v*j={5,j+1,.,5+0v}
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Particularly, (v—1)*u={u,u+1,..,u+v—1}.

By III), we have (v — 1) *u C v x u.

On the other hand, card(v * u) = v + 1 and since u + v¢v * u,
the set v*u — {u,u+1,...,u+v—1,u+ v} has only an element z.
Then v *u = {u,u+1,...,u+v—1} U{z}.

Possibilities:

1°ze{ut+v+1,..,n—1},
2° z€{0,1,..,u—1}.

1°Ifre{u+v+1,..,n—1}, then v xu = {zg*,...,z2*"}, where
% =u+ s, for s € {0,...,v — 1} and z2** = x. We have

(v ) %0 = {z§", ..z} + 0 = | (23 +0)

Jj=0

and using III, we obtain

Therefore (v *u) *0 = {0, ..., z2**} = {0, ..., x}, whence

v
u+ v € (v *u) * 0. Moreover,

v (u*x0)=vx{0,..,u} = LuJ'u*j_—_ (Lujv*j) U(v*u) =
=0 =0
={0,1,..,u+v—1} U {aF*, ...z} =
={0,1,...,u+v—-1}U{y,u+1,..,u+v—1z} =
={0,1,..,u+v—1,z},

whence it follows u + v ¢ v * (u % 0) = (v * u) * 0, a contradiction.

2°Ifx € {0,1, ...,u—1}, then we have vxu = {z3**, ..., z2**}, where
g =zand g™ =u+s—1,forse {1,..,v}.

Then, v ¥ u = {z*, ..., 22"} = {z} U {u,u+1,..,u+v—1},
where v # 0.
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If v>1, we obtain easily a contradiction. Indeed, let us consider:

(v_]_)*(l*u):(U—l)*{u,u+1}=
=((v=1D*u)U((v—1)*(u+1)=
={u,u+1, utv—1}U{u+lu+2,..,utv}=
={u,...,u+v}.

On the other hand,

((v=1)*1)xu = {1, ..., v}*u = | Jj*u = vu = {z,u, .., ut+v-1}.
j=1
Therefore, {u,...,u+v} = {z,u,...,u +v — 1}, a contradiction.

By 2), we have v * (u — 1) # v * u, hence z # u — 1, whence

u ¢ {0,1}.
We shall prove that v = 1 implies u = 1, which is in contradic-
tion with u ¢ {0, 1}. First, we prove that if u > s — 1, then

s*¥(u—1)={z,z+1,..,c+s—-2,u—1,u} for s € {2,...,u}.
For s = 2, we have
1x(1x(u—-1)=1*x{u—-Lu}=1*(u—-1)U(l*u)=
={u—1,u}U{z,u} = {r,u — 1,u} and
I*x)*x(u—-1)={1,2}x(u-1)=(1*x(u=-1))U2*x@u-1)=
=2x(u—1),
whence 2 * (u — 1) = {z,u — 1,u}.

Suppose the assertion true for s — 1 and we shall prove it for s
(where s < ¢). We have:

Ix((s—1D*(u—-1)=1*x{z,z+1,..,c+s-3u—1u}=
={z,z+1}U{z+1L,z+2}U..U{z+s-3,z+s—2}U
U{u — Lu}U{z,u} ={z,c+1,..,c+s—2,u—1,u} and

Ix(s—1)*x(u—-1)={s—1,s}*x(u—-1)=
=((s—D*(u—-1)U(s*x(u—1)) =s*(u—1).
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Therefore, s % (u —1) = {z,z+1,...,x+s5s—2,u—1,u}.
Let us consider u = s. We have

1x(s*x(u—1)=1*x{z,z+1,...,c+s—2,u—1u} =
={r,z+1}U{z+1,z+2}U..U{s+s—-2,x+s—1}U

U{u—-1Lu}U{z,u} ={z,z+1,..,c+s—1,u—1,u} and

Ixs)x(u—1)={z,s}*u—-1)=(zx(u—-1)U(s*x(u—1))=
=sx(u—1)={z,z+1,..,2+35—2,u—1,u},

whence we obtain £ + s — 1 = u — 1 and since s = u, it follows
z = 0. Therefore

ux(u—1)={0,1,...,u—1Lu} =ux0

and by 2) it follows u — 1 = 0, that is u = 1.

Therefore, the both possibilities for z lead us to contradictions.
Then V (¢,7) € A%, j +1i € i x j, and so, the theorem is completely
proved. [ ]

6. Remark. Notice that for any k € {1,2,...,n — 1} the elements
of the row k (in the composition square) are sets of k + 1 elements.
The advantage of using this hyperstructure is the following one: we
use dispositions instead of permutations and there are many more
dispositions than permutations.

On the other hand, this hyperstructure is not very interesting
from the cryptography point of view: indeed, it is the same as
ciphering in such a way as to divide the cleartext in letters and to
insert a number of letters equal to the key (becauseVj € A, j € i*j
and card(i * j) =<+ 1).

In constructing algebraic cryptosystems, it is very important
to remember that: ” Cryptography likes confusion”



Chapter 8
Codes

In general, Code Theory and more precisely Error—Cor-
recting Code Theory is one branch of applied mathematics,
which massively uses algebraic methods and results.

Through a channel, recall that Error—Correcting Code
Theory is essential for all types of communications (for in-
stance, telephonic communications, radio communications
and so on).

Among the most remarkable codes, we recall Hamming
codes, QR-codes, which are important classes of cyclic codes.

We present below a connection between Steiner hyper-
groups and linear codes. We think that the study of this
connection deserves to be studied in depth. For more de-
tails on Error—Correcting Codes, see [452], [454] and [457].

G. Tallini established connections between Code Theory and
Hyperstructure Theory. We mention some of his results in §1 and
in §3.

All the notions mentioned in this chapter are defined and studied
in a very interesting book [454] on Combinatorics, Galois geometry
and Codes. For a good understanding of the results of this chapter,
we suggest the reader to examine this book. Thus, we shall present
here some definitions we shall use in the following.

257
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§1. Steiner hypergroupoids
and Steiner systems

1. Definition. A hypergroupoid (H,-) is called n-hypergroupoid
of Steiner if it satisfies the following conditions:

(1) Y(z,y) e H?, z € zy D v.

. 1, f z=y9
2 =4 b

(i) V(z,y) € H?, card(z y)—{ n if T4y

(ii) the associativity law holds for every three elements, not all
distinct.

2. Remarks.

1. By (1), it follows that (H, -) is a quasi-hypergroup and by (i)
and (ii), we obtain that Vz € H, zz = {z} and n > 2.

2. By (iii) and 1), it follows:
V(z,y) € H?, z(zy) = 2y = (zy)y and z(yz) = (zy)z,
whence we obtain V (z,y) € H2, = #vy, V(z,u) € Ty, z # u,
we have zy = zu and so, it follows the commutativity.

3. Definition. An n-system of Steiner is a pair (H,R), where
H is a non-empty set, whose elements will be called points and R
is a family of subsets of H, called lines, such that the following
conditions hold:

(i) any line has exactly n points

(ii) for any two different points there is a unique line which con-
tains them.

Let us see what is a Galois field.

Let g € Z,[X] (where p is a prime), g irreducible, such that g
has the degree h > 2. The field Z,[X]/(g) has the order ¢ = p" and
it is called a Galois field of order q; we shall denote it by G,.
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Notice that any finite field of order ¢ = p" is isomorphic with G,,.

4. Example of an n-system of Steiner. Any projective or affine
space over a Galois field of order g is an n-system of Steiner, with
respect to its lines (where n =g+ 1 or n =g).

5. Theorem. With any n-system of Steiner, we can associate an
n-hypergroupoid of Steiner and conversely.

Proof. Let (H,R) be an n-system of Steiner. For V(z,y) € H?,
let

om—1 T if z=y
TCY =1 the line through z and y, if z#y.

We can easily check that (H, o) is an n-hypergroupoid of Steiner
and we shall call it the n-hypergroupoid of Steiner, associated with
the n-system of Steiner (H,R).

Conversely, if (H, *) is an n-hypergroupoid of Steiner, then we
consider the family

{zxy|(z,y) € H? z# y}, denoted by R.

We shall verify that (H,R) is an n-system of Steiner. Indeed, by
(i1) of the definition of an n-hypergroupoid of Steiner, it follows
that for all (z,y) € H?,  # y we have card(z * y) = n. By (i) of
the same definition, V (z,y) € H?, = # y, there exists a line z %y,
which contains z and y.

Moreover, there exists a unique line, containing z and y.

Indeed, if (1, s) € R? and {z,y} CrNsandif r = z*t (where
(2,t) € H?, z #t) and s = u * v (where (u,v) € H?, u # v), then
Zxtl=x*xy=ux*xv.

Hence r = s and therefore, (H,R) is an n-system of Steiner. m

6. Definition. A hypergroup (H, o) is called a Steiner hypergroup
if the following conditions hold:

(i) Vz€H, zoz=1z.

(ii) V(z,y) € H%, z ney, wehavez € zoy Sy, roy # H and
card(zoy) > 3.
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(ili) V(z,y) € H?, z#y, Vz € zoy, z # z, we have zoy = zox.

7. Remarks.
1. Any Steiner hypergroup is a commutative hypergroup (by

(iii)).

2. In a Steiner hypergroup (H, o), the following condition holds:
V(z,y)€eH? z#y,V{u,v} Cxoy, u# v, we have zoy =
= u o v. Indeed, if u = z, the above condition results from
(iii) and from the commutativity. If u # x, thenv € zoy =
=uor=vou=1uov.

8. Theorem. With any finite Steiner hypergroup (H,o), we can
associate a finite irreducible projective space of dimension > 2 and
conversely.

Proof. Let F = {zoy | (z,y) € H?, = # y}. Since V(z,y) € H?,
z # vy, V{u,v} C zoy, u # v we have zoy = wov, it follows that
(H,F) is a projective space. Moreover, since V (z,y) € H?, z # y
we have card(zoy) > 3 and zoy # H, we obtain that (H,F) is a
finite irreducible projective space IP, of dimension r > 2, that is
either PG(r,q), the projective space over the Galois field of order
q = card(zoy) — 1 or a non-Desarguesian plane of order g (see
Theorem 13.1, [454]).

Conversely, let IP, be a finite irreducible projective space of
dimension > 2. We can define on IP, the following hyperoperation:
V(z,y) € IP?,  # y, zox = z and zoy is the line through z and .

Then (IP,, o) is a Steiner hypergroup. |

§2. Some basic notions about codes

The theory of codes finds out and corrects the errors, that can be
introduced by the transmission of information from a source to a
receiver.
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Usually, the information is translated in a language with a
small number of symbols, which are the elements of Z, (where p is
a prime natural number).

Often, it is considered p = 2. Any element of the message is
represented by a finite sequence of symbols, which is called pass-
word. We shall consider codes with an invariable length, that means
codes whose paswords contain the same number of symbols.

This number is called the code length.

Let n be the length of a code V over Z,. We consider a proper
subset of Z, as set of passwords.

The set of passwords must be different from Z7, otherwise it
is impossible to correct errors.

Indeed, if instead of a code password we receive another one,
different from all the code passwords, then we notice an error. It is
important that the set of code paswords contains only one password
which is similar with the received password. Thus, any proper
subset of Zj, is considered to be a code of length n over Z,.

Let V be such a code. The elements of V are called passwords.
Ifz=(z1,....,20) € Z,, then the number

w(z) = card{z; | i € {1,2,...,n}, z; # 0}

is called the Hamming weight (or weight) of z.

Let (z,y) € Z, xZj,. The weight of z—y is called the Hamming
distance (or distance) of x and y and it is denoted by d(z,y).

The following conditions, which characterize the distance no-
tion, are verified: for any z,y, z in Z; :

d(z,y) =0ifand only if z =y
d(z, z) < d(z,y) + d(y, 2).

The minimum weight of V, denoted by w, is the minimum of
the nonzero passwords weights of V.

The minimum distance of V', denoted by d, is the minimum of
distances between two distinct elements of V.
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V is called a linear code if it is a subspace of the vectorial space
L, .

In a linear code, the minimum distance d and the minimum
weight w are equal.

If V is a linear code of length n, dimension 7 and minimum
weight w (which is equal with d), then we say that V is an (n,w, )~
code.

If we write the elements of V' one below another, then we obtain
the so—called book of V.

Let V be a linear code of dimension r.

V' is uniquely determined by r independent passwords of it.
The matrix which has as lines these r passwords is called the gene-
rated matriz of V.

T11 " T1n
Let H = | oo be a generated matrix of V
Tr1: T
T11 " T1in
and suppose that | ............... # 0.
Tyl * - Tpy

Let ¢, c¢,...,c, be 7 arbitrary elements in Z,. Then there
is a unique password of V' whose first r coordinates are exactly
C1,C2y ..., Cp.

Therefore, the first 7 coordinates are sufficient to obtain the
information.

From H we can obtain the so—called matriz of information
composed by the first 7 columns; the others n —r columns form the
check matriz (or parity check).

The rate of the code V' is the number r/n.

A reasonable code has a high rate and a high minimum dis-
tance.

If d is the minimum distance of V, we can correct any password
which has a number h of errors (during the transmission), with
h < d/2. Indeed, if we receive Z instead of x € V, such that
d(Z,z) = h < d/2, then for any y € V, y # z, we have d <
<d(z,y) < d(z,z) + d(y,Z) = h+d(y,Z) < d/2 + d(y, Z), whence
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d(y,Z) > d—d/2 = d/2. Hence z is the unique password of V, such
that d(z, Z) < d/2.

Since the number of errors is k < d/2, we can identify x as the
right password, obtained from z.

An open problem is the following one: let n and r be known;
we are interested to find the maximum value of d, such that there
is an (n,d, r)-code.

§3. Steiner hypergroups and codes

Now, recall some definitions (see [454]).

A projective plane is a pair (m,R), where 7 is a set, whose e-
lements are called points and R is a family of subsets of 7, called
lines such that the following conditions hold:

(i) there is a unique line, containing two distinct points;
(ii) any two distinct lines has exactly one common point;

(iii) there exist four points, such that any three points of them are
not collinear.

Let 7 be a projective plane.

A subset K of 7 is called arc if any three points of K are not
collinear.

A line is called tangent of K if its intersection with K has
exactly one point.

An oval Q2 of 7 is an arc such that for Vx € Q, there is exactly
one tangent ¢, in x to .

A hyperoval is an arc without tangents.

Let (H,o) be a Steiner hypergroup with n elements and let
IP,, = (H,F) be the associated projective space, where r is the
dimension and ¢ = card(zoy) — 1.

r
Now, we order the points of H and set n = v, = ) ¢'. The
i=0
characteristic function of each subset X of H determines a vector
w(X) of Z3.
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Let ¢ : HxH — Zy~{0} = PG(n—1,2) (where PG(n—1,2)
is the (n — 1) dimensional projective space over Zs),

Y(z,y) = p(z0y).

Denote K = Y(HxH — Iy), where Iy = {(z,z) | z € H}. That
means K consists of all the points in PG(n — 1,2), whose coordi-
nates are the characteristic functions of the lines of IP, 4.

Let £ be a family of lines of IP,,. We say that L is of even
type if through any point of IP, ;, an even number of lines of £ pass.
The points of K, which correspond to the lines of £, are linearly
dependent.

Conversely, if a subset L’ of K is linearly dependent, then the
family £’ of lines of IP,,, whose characteristic functions are the
coordinates of the points of L, contains a subfamily £ of even

type.

9. Theorem. Let L # () be an even type family of lines of IP, 4.
Then card L > q + 2 and we have card L = q + 2 if and only if if
q is even and L is a dual hyperoval on a plane of IP,,, that is a
hyperoval in the dual plane.

Proof. Let ¢ be a line of £. Through any point of ¢, there passes
an odd number of lines of £, different from £. Since cardf =gq+1,
it follows card £ > ¢ + 2.

If card L = g + 2, then through any point of £, there passes
exactly one line of £, different from £.

Since £ is no special line of £, it follows that the lines of L are
pairwise incident. Therefore, they lie on a plane of IP, ; and form
a dual hyperoval. [ ]

Let P be a point of IP,, and let Sp be the set of all lines of
IP, 4, which pass through P. We shall call Sp the star of lines with
center P.

10. Theorem. There is no star of lines of IP, , which contains a
non—-empty set of even type.
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Therefore, the image of a star, under ¢, is a subset K of
PG(n — 1,2) which consists of linearly independent points.

Consequently, if A denotes the matriz whose columns are the
coordinates of the points of K, then

V,y <rankA<V,=nandcard K =V, V,_1/W1

Proof. Let Sp be a star in IP, 4. A unique line of Sp passes through
any point of IP, ,—{P}. Therefore, Sp contains no non—empty even
type set.

The matrix A has n = V, lines and card K = V,V,_;/V; (the
number of lines in IP, ;) columns. By the previous argument, A has
V,_1 = card Sp linearly independent columns, so V,_; < rank A <

<V,=n n

11. Definition. Let (s, N) € Z?, N > s+ 1 > 2. A subset K of
PG(r,q) is called N—cap of kind s if K has N elements, such that
any (s + 1) elements of K are linearly independent and there are
(s +2) elements of K, which are linearly dependent.

From the above two theorems, it follows the following

12. Corollary. The set K is an N-cap of kind s, which belongs to
a space PG(t —1,2), where

N =card K =V, V,_1/V4, s> q and
Vo1 <t=rankA<LV,=n.

We have s = q if and only if q is even and either r > 3 or (r =2
and the dual plane P, , contains hyperovals.

Moreover, if r > 3, then (g < s <2q ifq is odd) or (s=q if q
is even).

Let G, be a Galois field of order q (where ¢ = p", p prime) and
C* a linear code of dimension k of G7, that means C* is a vectorial
subspace of dimension k, of G7.
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The study of linear codes of G, which correct errors is in connection
with the study of n-caps of a Galois space (see [454], 44).

13. Theorem. (Th. 43.2, [454]) The linear code C* corrects e
errors if and only if e = [f‘_’_;_ , where w is the minimum weight

of C* and [z] is the integer part of z, that means [z] C = < [z] + 1.

Now, consider the following subspace of Z2 : C? = {X € ZY |
AX =0}

It follows that C? is a linear (N, w, d)-code with N = V,V,_; /W,
w=s+2and d = N —t and it corrects e = [(w—1)/2] = [(s+1)/2}
errors. Since (¢ < s < 2q if g is odd) or (s = q if ¢ is even) it follows
that ¢/2 < e <q.

Moreover, the following statements can be verified:

1) if r =2, ¢ = 2(mod 4)
then t = (¢? + ¢ +2)/2 and d = (¢ + g) /2.

2) if r =2, ¢=0(mod4)
then t < (¢ + ¢+2)/2 and d > (¢® + q)/2.

3)ifr=2 qgodd thent=n—-1=¢*+q; d=1.

14. Proposition. We havet >V, +q¢ 1 — 1.

Proof. Let us consider two distinct points P; and P, of IP,, and
a hyperplane 7 on P, and not on P;.

The set of all the lines through P, and all the lines through P,
not on m, contains no even type subset.

Therefore, K contains V,_y+(V,_1—V,_2—1) =V, _1+q¢1-1
linearly independent points. |



Chapter 9

Median algebras, Relation
algebras, C-algebras

e For the first time, median algebras appeared in the
late fourties. A.A. Grau [148] characterized Boolean
algebras in terms of median operation and comple-
mentation, G. Birkhoff and S.A. Kiss [25] discusses
the median operation for distributive lattices. The
concept of abstract median algebra was introduced by
S.P. Avann [12] and later M. Scholander [356], [357],
[358] and S.P. Avann [13] performed a detailed study
of median algebras. More recently, J. Nieminen [301],
E. Evans [139], H M. Mulder A. Schrijver [297], J.R.
Isbell [165]), H. Werner [424] worked on this subject.

e We shall see that quasi—canonical hypergroups can
be characterized as the atomic structures of complete
atomic integral relation algebras (§2). Moreover, the
Tarski complex-algebra construction gives a full em-
bedding of quasi-canonical hypergroups into relation
algebras. Therefore, certain combinatorial properties
of quasi-canonical hypergroups transfer to relation al-
gebras. Using this process, results of Monk {295}, [296]
or McKenzie [263], [453], about relation algebras (or
cylindric algebras) turn out to be just interpretations
of quasi—canonical hypergroup results.

267
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e Let us remember some remarkable C-algebras: the
adjancency algebras of association schemes [441], S-
algebras over finite groups [31], and centralizer alge-
bras of homogeneous coherent configurations [449].

81. Median algebras and join spaces

In this section, we present a connection between median algebras
and join spaces, which was established by H.J. Bandelt and J.
Hedlikova.

1. Definition. A ternary algebra is a set M together with a
single ternary operation (a,b,c) — (abc). A ternary algebra M is
called median algebra if it satisfies the following identities for any
(a,b,c,d,e) € M5:

1) (aab) = a;
2) (abc) = (bac) = (bca);
3) ((abc)de) = (a(bde)(cde)).

2. Theorem. (see [357]) On every median algebra M, the following
hyperoperation

V(a,b) € M?, aob={z € M | z = (abz)}
satisfies the properties:
(o) Yae M, aca = {a};
(B) if b € aoc, then aob C coa;
(7) Y(a,b,¢) € M3, aobNbocN coa = {d} (where d = (abc)).

e

Conversely, every hyperoperation ”o” which satisfies the properties
(), (B) and (v) induces a unique ternary operation by which M
becomes a median algebra.
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3. Theorem. Let M be a ternary algebra such that the conditions
1), 2) of Definition 1 and
4) Y (a,b,c) € M3, ((abc)bc) = (abc)
are true in M. Set V(a,b) € M?, aob = {z € M | z = (abz)}.
Then (M, o) is a join space if and only if M is a median algebra.
Proof. From 1) and 2) it follows that V (a, ) € M?2, we have
aob # 0 # a/b, aob = boa and aca = {a}.

7«=" First, suppose that M is a median algebra.

If x € (aob)oc, then there exists y € M, such that z =
= ((aby)cz) = (a(bcz)(czy)), whence the associativity of "o” fol-
lows.

Let us prove now that: if a/bNc/d # O, then aod N boc # .

Let £ € a/bNc/d. Then (ad(bdz)) = ((abz)d(bdz)) = (bdx). It
follows (bdz) € aod, and similarly (bdz) € boc.

Hence, (M, o) is a join space.

=" Conversely, let us assume that (M, o) is a join space.
If b € aoc and z € aob, then by the associativity of ”o” and by
aoa = {a}, for any a € M, we obtain

z € ao(aoc) = (aca)oc = aoc.
Since ”o” is commutative, the following implication is satisfied:
b € aoc == aob C coa,
that is (). From 4), we obtain that for z = (abc), we have
z € aob N bocN coa.

On the other hand, if y € aobNbocN coa, then b € z/aNy/c
and b € y/anz/c. Since (M, o) is a join space, it follows that there
exist u € zocN aoy and v € yoc N aox.
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From z € aoc and u € zoc, it follows ¢ € z/a N u/z, so
zox N aocu#, whence z € aou.

Similarly, we obtain y € aowv.

By the associativity of "0”, u € aoy and * € aou imply
T € aoy; v € aox and y € aov imply y € aox.

Hence z = (azy) = y, whence it follows (7).

By the previous Theorem, we can conclude that M is a median
algebra. ]

§2. Relation algebras and quasi—canonical
hypergroups
4. Definition. A system < A,+,-,—,0,1,%, 711" > is called a
relation algebra (RA) if:
1° < A, +,-,—,0,1 > is a Boolean algebra;
2° < A, *,1’ > is a semigroup with identity;
~1 is a unary operation, which satisfies the following condition:
P (z+xy)-z2=0= (z71*2)-y=0< (zxy™1)-z=0.

This notion was introduced by Tarski. As examples of relation al-
gebras, we can consider the following system (which is called proper
relation algebra) < P,U,N,~,0,Y? o, 71 Iy > where P is a family
of binary relations on a set Y, such that P contains @, Y2 and
Iy = {(y,y) | y € Y} and it is closed under U, N, ~, relation com-
position o and inverse 1.

5. Definition. We say that a relation algebra is representable if it
is isomorphic to a subdirect product of proper relation algebras.

6. Definition. We say that a relation algebra is an integral one
(IRA) if one of the two following equivalent conditions holds:
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1) zxy=0=2=00ry=0.

2) 1’ is an atom
(that means there is no element z, such that 0 < z < 1".)

Let us consider now < H,-, 7! e > a quasi-canonical hyper-
group and < P(H),U,N,~,0, H > the Boolean algebra of all sub-
sets of H.

We shall still denote by ”-” and ”~!” the extensions of the
quasi—canonical hypergroup operations on subsets.

7. Definition. The following system
'A[H] = < P(H)’ U’ 07 N’ m7 ‘H7 .7 —17 e >
is called the complex algebra of H.

The following theorem establishes an one-to—one correspon-
dence between quasi-canonical hypergroups and complete atomic
IRA’s and it is due to St.D. Comer [47].

8. Theorem.

(i) If H is a quasi—canonical hypergroup, then A[H] is a complete
atomic IRA.

(i1) If A is a complete atomic IRA and At, is the set of atoms
of A, then the system At(A) =< Ata,*;7 1,1’ > is a quasi-
canonical hypergroup.

(iii) If H is a quasi—canonical hypergroup and A is a complete
atomic IRA, then

H ~ At(A[H]) and A ~ A[At(A)].

Proof. i) We have to verify only the condition 3° of the definition
of a relation algebra. If (X-Y)NZ # 0, then therearez € Z, z € X,
y€Y,suchthat z€ z-y. Thenz € 2y71, 50 (Z- Y1) NX #0.
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Similarly, we prove the other implications, using also the equa-
lity (z71)7! = .

ii) Whenever z,y are atoms, notice that = * y and z~! are
atoms, too.
The only condition to check is the following:

UVezxz Nz txz, forall z € Aty.

We have (1'*z)-z # 0, so (z*z7!) -1’ # 0 and since 1’ is an atom,
it follows 1’ € z * z~!. Similarly, it follows 1 € ™! x 2.

iii) By the correspondence of z with {z}, we obtain the first
isomorphism and for the second one, we consider the correspon-
dence of a € A with the set of atoms z < a. (]

§3. (-algebras and quasi—canonical
hypergroups

The following notion of C-algebra, presented here, is due to Y.
Kawada [179] and the connection with quasi—canonical hypergroups
is due to St.D. Comer [52].

9. Definition. A C-algebrais a pair (A, B) where: A is an algebra
and B = {x,...,2z4} is a basis for A (as a complex linear space),
such that the following conditions are satisfied:

1) for V(i,5) € {0,1,...,d}?, z;0z; = prjmk;
k

2) Jde =z € A, such that V (5, k), pgj =0k = pfo;
3) every pfj is a real number;

4) there exists a permutation i ~ ¢’ of {0, 1,...,d},
such that (')’ =i and pf; = p;?,'i,;
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5) for V (3) € {0,1,...,d}, 3k;, such that k; > 0,
and Vj € {0,1,...,d} we have p; = p); = kidy;

6) the map z; ~ k; induces a linear representation of A.

10. Remark. From 4), it follows that the map z; ~ z; extends
to an antiautomorphism of A.

A C-algebra is commutative if pil“j = p;?i for all 4, j, k.

11. Lemma. We have

1°) 0 = 0;
20) ]{70 = 1,
30) k,/ = kil;

4°) kspfj = kipij' = RjPys-

Proof. We obtain 1°) and 2°) from 2) and 5). 5) also implies
kidijy = k;d;y for all i,j; hence k; = k; when j = i’ and so we
obtain 3°). Since (z; ® ;) @ xy = z; ® (z; ® Ty), it follows the first
equality of 4°), expressing each of (z; e z;) ® 2y and z; @ (z; ® zy)
as a linear combination of zy, ..., x4 and comparing the coefficients
of zg.

From the first equality, 4) and 3°) we obtain the second equa-
lity, so we have '

O SO R A
kipsj/ = kz’pjs' = k;jp}s- n

12. Theorem. With any C-algebra A with basis B, such that the
parameters p; are all non-negative (the Kreim condition), we can
associate a quasi—canonical hypergroup < B,o,e >, where r;0x; =
= {zx | pf # 0} and ;7' = zy for all i, j.

Proof. Since z; ez, = pri,xk = k;xo+- - -, it follows z¢ € z;0x;.
k
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If zy € z;0xj, then p?j, # 0, which implies j = ¢ by 5). Simi-
larly, z; is the only y such that 2o € yox;. Therefore z;' = zy is
the unique inverse of z;.

From 2), we obtain Vz € B, eoz=xoe={z}. From the previous
Lemma, it follows that z €yoz => y€zoz~! and z€y~'ox.

We have to verify only the associativity law.

From 4°) of the previous Lemma, we obtain that z,, € (z;0x;)oxy
if and only if there exists v, such that p};py, # 0. Similarly, we
have z, € z;0(z; o xx) if and only if there exists v, such that

PPy, # 0. From the equality Zp}’jp}jk = Zpi‘vp;?k (a consequence

v v
of 1)) and the Kreim condition, we obtain the associativity law for
< B,o,e >.



Chapter 10

Artificial Intelligence

Weak representations of an interval algebra are the ob-
jects of interest in the Artificial Intelligence.

Let us give some words about the Mathematicians who
worked on this subject.

Allen [3] defined the calculus of time intervals and Lad-
kin and Maddux [220] showed the interpretation of the cal-
culus of time intervals, in terms of representations of a par-
ticular relation algebra, in the sense of Tarski [178]. They
proved that there is, up to an isomorphism, a unique count-
able representation of this algebra.

Ligozat [241)] generalized the calculus of time intervals
to a calculus of n-intervals and presented this generalization
expressed in terms of relation algebras Ag.

Defining canonical functors between the category of weak
representations of A, and those of Ay, Ligozat [241] ex-
tended the results obtained by Ladkin [219).

Finally, it can be seen that the set of (p,q)-positions
can be endowed with natural operations which give rise to
a family of quasi—canonical hypergroupoids.

275
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81. Generalized intervals. Connections
with quasi—canonical hypergroups

In this paragraph, the notions of a generalized interval and of a
(p, q)-position are presented. These notions have been introduced
and studied by G. Ligozat and they have developed the study of
”interval calculi” used in Artificial Intelligence for representing tem-
poral knowledge.

It is shown that the set of (p, g)-positions can be endowed with
natural operations, which give rise to a family of hypergroupoids
or, equivalently, of relations algebras, in Tarski’s sense.

Let T be a chain and (p, ¢) € IN*xIN*.
1. Definition. The element
(a1,a2,...,ap) € TP,
such that a; < a2 < --- < a,, is called a generalized interval
(or a p-interval).
An l-interval is just a point of T. For any n € IN*, denote the
initial segment of IN* : {1,2,...,n} by [n]; [n] is empty if n = 0.

2. Definition. A map 7 : [p+g] — IN*, which verifies the following
conditions:

1) the image of 7 is an initial segment of IN*;

2) the restrictions of 7 at [p] and [p+q]—[p] are strictly increasing
maps, that is
(1) <7(2)<---<7w(p) and 7(p+1) < ---<7(p+4q)

is called a (p, q)-position.
Let us denote by II, , the set of (p, g)-positions.

3. Examples.

1° The permutations of {1,2,...,p + ¢}, that verify 2) are posi-
tions, called general positions.
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2° The position I;,’p =(1,...,p,1,...,p) is a (p,p) position, called
unit position. We have I, (1)=1,..., I, (p)=p, I, (p+1)=1,
I (r+2)=2, I, ,(2p) = p.

3) Let "a” be a p-interval and "b” a g-interval in 7. Then
the concatenation of a and b is a sequence of p + ¢ ele-
ments of T. We shall identify [p + g] with the sequence
(a1, az, ..., ap, by, ba, ..., by) and 7 can be considered a map from
the set {ai, ..., ap, b1, ..., by} into IN*.

We say that (a,b) is a T-realization of .

We can generalize the definition of a (p, ¢)-position for an ar-
bitrary finite sequence (py, pa, ..., Ps) of natural numbers, obtaining
thus the notion of (ps, p, ..., ps)-position.

For s = 3, we have the following:

4. Definition. A (p,r,q)—position o is amap o : [p+r+q] — IN*
such that

1) the image of o is an initial segment of IN*;.

2) the restrictions of o at the initial, median and terminal sub-
segments of length p,r and respectively ¢ are strictly increa-
sing maps, that is 0(1) < --- < o(p); o(p+1) < --- <
<og(p+r),olp+r+1)<---<olp+r+g).

Let II,, 4 be the set of all (p,r, ¢g)-positions. We can consider
the canonical projections pr,,, : Ilp,q — Il ., pr, , : I, 0 — II,
and pr,, : lprq — I, 4; for instance, if o € Iy, 4, T is the re-
striction of o at [p+ r], and {¢1,%2,...,t} is the image of 7, where
ty <ty < --- <y, then pr,(0)(i) = j if and only if 7(i) = t;.

Operations on I, :

5. Transposition. If 7 € II,,, then we can obtain an element
7t € I, in the following manner:

Tl w(i—q), if g+1<i<p+gq
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We have ()t = 7.
Speaking about generalized intervals a and b, the transposition
changes the position of a by that one of b.

6. Symmetry. If 7 € II,,, such that Imm = {1,2,...,k}, then
we obtain 7" € II,,, where n"(1) = (k+1) —w(p+ g+ 1 —3).
Speaking about generalized intervals a and b in T, that corres-
ponds to consider the opposite order on 7', so we associate at the
n-interval (¢y, s, ...,t,), written according the initial order, the n-
interval (t,,t,-1,...,t1), written according the opposite order.
Note that the symmetry s = hot is an involution on Il ,.

7. Composition.

Remark. Let m €1I,, and my €I, ;. Then the set P={c€ll,,, |
(0(1),0(2),..,0(p)) = (m(1),..,m(p)) and (o(p + 7 + 1),...,
o(p+r+q)) = (m(r+1),..,m(r + g)} is not empty.

Definition. Let m; € II,, and 7 € I, 4. Let moms = {pr, ,(0) |
o € P}. We say that mjom, is the composition of m; and .

According to the preceding remark, P is a finite, nonempty set,
so the composition is well-defined. Thus, if (a,c) is a T-realization
of m and (c, b) is a T-realization of 7y, then (a, b) is a T-realization
of one of its elements of 7jom,.

The following properties are easily verified, for any m € I1,,,,
mp €Il ; and w3 € I :

8. Proposition.
1) (momg)oms = myo(meoms);
2) mol,, =m and I, om =m;
3) I,, € mon} and I, € miom;
4) 7 € momy implies m € womh and m, € whom;
5) (momp)t = mhomi;

6) (mome)® = mioms.
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Connections with quasi—canonical hypergroups

In the following, we shall use a notion of simplicial groupoid, con-
sidered by P.J. Higgins [450].

First of all, by a groupoid is intended a category in which every
morphism (edge) is invertible. Let us see what does it means that
a morphism is invertible. Denote by E;; the set of edges from the
object ¢ to the object j. The identity elements e; satisfy the condi-
tion:

Vae€ Eij, ea=a= ae;.
Moreover, in a groupoid, for any a € E;j, there is a™! € Ej;, such
that aa™! =¢; and a™la =¢;.

Notice that the set of edges from an object i to itself is a group,
called the vertex group at i.

Now, let I be a set. We denote by A(I) the graph, whose vertex
set is I and whose edge set is I xI. Moreover, V (¢, j) € I xI, there is
a unique edge (%, j) from 7 to j, hence a category structure on A(J)
can be uniquely defined, namely by the rule (3, 7)(j, k) = (¢, k). The
identity elements are the edges (%,j) and (j,%) is inverse to (4, 7).
The groupoid A(T) is called a simplicial groupoid.

Let A(IN) be the simplicial groupoid on N, that is the groupoid,
whose associated graph has IN as vertex set and for any (p,q) in
IN?, there is a unique arrow joining p and gq.

A subgroupoid of A(IN) is characterized by the set S of its
arrows, which is an equivalence relation on a subset I of IN. Thus,
we shall identify S with the corresponding subgroupoid of A(IN).

Let S be a subgroupoid of A(IN) and:

1) Os = U My,
(p-q)eS?
momy, if ¢g=p

2) if my € Il g, m2 € Iy o, thenset my-my = { 0 otherwise

3) Is ={L,, | (n,p) € S}.
4) * is the transposition.
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9. Theorem. (Ilg,-,Is,?) is a quasi-canonical hypergroupoid. It
is a quasi—canonical hypergroup if and only if S has only one vertex.

Proof. S is a subgroupoid if the following conditions are satisfied:

1) (p,q) € S and (¢,r) € S=> (p,7) € S;
2) (n,9) € S=(¢q,p) €S.

It is easily to check for (Ilg,-,Is,?) the conditions of a quasi-
canonical hypergroupoid, using the preceding Proposition.

Finally, IIs is a quasi—canonical hypergroup if and only if S is
a group.

10. Remark. Using the standard construction of the associated
algebra of complexes, we obtain that for any subgroupoid S of
A(IN), the complex algebra Ag of Ilg (see Definition 7, Ch. 9) is a
complete, atomic, relation algebra, such that 0 # 1.

If S = {n}, we write A, instead of Ag,;.

The interest for these algebras is justified by the fact that
the objects utilized in Artificial Intelligence are the ”weak-—
representations” of these algebras.

§2. Weak representations of interval
algebras

In the following, the notion of weak representation of an interval

algebra is introduced. G. Ligozat obtained a full classification of

the connected weak representations of the algebra A,, of n-intervals.
First of all, let us recall what a relation algebra is.

11. Definition. An algebra A = (4, +,0,-,1,*,1',71), where "+,
”.” and ”*” are binary operations on A4, ”~1” is a unary operation
on A and 0,1, 1’ are elements of A, is called a relation algebra if the
following conditions hold:

1) (4,+,0,-,1) is a Boolean algebra;
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2) V(z,v,2) € A3, (z*y) * 2=z * (y * 2);

) Vze A, 'sxz=x=zx*1;

4) V(z,y,2) € A3, we have:
(*y)-2=0<= (z71%2) y=0<= (2xy™}) -z =0.

12. Example. Let U be a set. Then

(P(UXU)a U7 07 ﬂ, UXU; o, 1UXU)t)

» "

is a relation algebra, where ”0” is the composition, 1yxy is the
identity relation and ”*” is the transposition.

13. Definition. Let A be a relation algebra and U a set. A map
®: A — P(UxU) is called a representation of A if:

1) @ is an one-to-one map;

2) @ defines a homomorphism of Boolean algebras;
3) V(z,y) € A%, ®(z *y) = ®(2)oP(y);

4) (1) = lyxu;

5) e(")=".

More generally, a weak representation is defined by dropping con-
dition 1) and replacing condition 3) by the weaker condition:

3) V(z,y) € A%, ®(z*y) D ®(z)od(y).

If A is a simple algebra, then we say that a weak representation of
A into P(UxU) is connected if ®(1) = UxU.

Now, let .S be a non-empty subset of IN and Ils be the disjoint
sum of all I, ;, where (p,q) € S2.

In §1, we obtained that (Ilg,-,Is,?) is a quasi—canonical hy-
pergroupoid. Applying to (Ilg,-,Is,*) the standard construction
which associates with a quasi—canonical hypergroupoid its complex
algebra (see [46]), we obtain the complex algebra Ag.

For S = {n}, we obtain the relation algebra A,, of n-intervals.
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Now, let ® be a connected weak representation of A, into
P(UxU), where U is a set.
Recall that the elements of II,, can be interpreted as maps
from the set {z1, ..., Tp, 1, ..., Yn} into IN™.
For any element 7 of I1,, ,, which can be considered as an atom
of A,,, ®(m) is a binary relation R, on U and we have:
1) (Rx)ren,, is a partition of UxU and
2) V(r,n") € I, ,xI1,, ,, we have RoR C Rypnr.
For 1 < i,7 <n, we consider the following elements of A,, :

a; ; which is the sum of all 7, such that n(z;) = 7 (y;);

b; ; which is the sum of all 7, such that n(z;) < 7(y;)-

We obtain the following result:

14. Proposition.
1°) a;; > 1, ;
2°) af; = a;s;
3°) aij * ajx = aix;
4°) a;j *bjg * are = aiy;
5°) by * bjx = bix;
60) bi,j : b;‘,i =0;
7°) bij+ b +ai; =1,
8) if i < j, then T, , € by.



Chapter 11

Probabilities

Using a particular non—standard algebraic hyperstruc-
ture, A. Maturo [251] proved that the problems on the co-
herent assessments of probability and their solutions can be
expressed in a very useful and simple form.

Thus, new algorithms to control the coherence can be
introduced in this new algebraic context.

In several of their papers, S. Doria and A. Maturo have consi-
dered some algebraic structures and hyperstructures of events and
contional events. They have studied the properties and the proba-
bilistic meaning of these hyperstructures and they also have consi-
dered their associated geometric spaces.

We know that conditional events are used in the Artificial In-
telligence to represent partial information and vague data.

In the following, we present some constructions considered by
S. Doria and A. Maturo.

Let E = {Ey, Es, ..., E,} be a finite family of events. Set

Ei E,' lf g,—:l
Ei —{Fiy if g,:—l

283
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1. Definition. We call atoms generated by E, the nonempty inter-
sections E3' ES?...Eé», where for Vi € {1,2,...,n}, Ef are defined
above.

Let C(E) be the set of all atoms generated by E.

Let £ be an algebra of events, so the following two conditions
hold:

1. if A€ £, then A € &
2. if (A, B) € £2, then AB € €.
We define on £ the following hyperoperation
V(A,B) € €2, AoB = C(A, B).
Then it follows that:

2. Proposition. (£,0) is a commutative semihypergroup, called
semihypergroup of atoms.

3. Proposition. Let E be a family of events, such that EU {¢, 2}
s an algebra of events. Then E is a substructure of (€,0) if and
only if the following implication holds:

pe E=N€E€E.

Proof. ”<=" For any (4, B) € (E — {¢,2})xE, we have
AoB C E — {¢,0}.
We can have the following situations:

1.¢ ¢ Eand Q ¢ E. In this case EoE C E, so (E,o) is a
substructure of (£, o);

2. ¢ ¢ Eand Q € E. Then EoF C E and Q0oQ = {Q};

3. ¢ € Eand Q € E. Since Q02 = {2} and gogp = {4}, it
follows EoFE C E.
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"==" If E is a substructure of £ and ¢ € E, then ¢o¢ = {Q}
and so Q) € E. =

Notice that if F is a substructure, then also E — {¢} and E —
{¢, 2} are substructures.

4. Proposition. Let (E,o) be a subhypergroup of (€,0). Then
V (A, B) € E?, we have (A C B or AC B) and (B C A or B C A).

Proof. Indeed, thereis Y € E, such that B € AoY, whence B C A
or BCA.

On the other hand, since 3X : A € BoX it follows A C B or
ACRB. =

5. Corollary. Let E be a family of events contained in £. Then
(E, o) is a subhypergroup of (€,0) if and only if E = {Q} or there
erists A € £ — {¢,Q}: E={A,A}.

Proof. ”«<=" For any A € £ — {¢, 2}, we have that ({Q}, o) and
({A, A}, o) are hypergroups.

"==" Let (F, o) be a hypergroup and A, B be two elements of
E. Since VA € E — {Q}, it follows ¢ ¢ E. Suppose Q € E. Since
VAec E—{Q}, we have Q2 ¢ Ao Q, it follows E = {Q2}.

Now, suppose that E N {¢$, N} = ¢.

According to the above proposition, it follows VA, B € E, we
have (AC Bor AC B)and (BC Aor BC A). If AC B, then
B & A, otherwise A = ¢ and A = (), a contradiction. Then A C B
implies B C A and so A = B.

Similarly, A C B implies B C A and so A = B.

Therefore E = {A, A}. =

Hyperstructures and conditional events

Let £ be an algebra of events.
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6. Definition. For any (4, B) € £?, we call the conditional event
A/B the logical entity, which is true if AB is true, false if AB is
true and it is undetermined if B is false.

Notice that the triplet (X,Y, Z) of events represents a condi-
tional event if and only if X,Y,Z are pairwise incompatible and
their union is 2.

Let C'E be the set of triplets (X, Y, Z), which represent condi-
tional events.

Let U={{A,B} CE| AC Bor BC A}.

7. Proposition. The map f : CE — U, defined as follows:
fX,Y,Z2)={X,XUY}
s a bijection.

Proof. Indeed, for any {4, B} € U, with A C B, we have that
fY({A, B}) = {(4, B — A, — B)} has cardinality 1. [

In this manner, we can represent any conditional event as an
element of U.

Now, let £ be an algebra of events. We define on £ the following
hyperoperation:

V(A,B) € &2, AO B ={AB,B}.

The hypergroupoid (£, ©) is called the hypergroupoid of conditional
events and it is denoted by CEH.

8. Proposition. The hypergroupoid (£, ®) is a weak—commutative
and a regular weak-associative one.

Proof. For any (X,Y,Z) € £3, we have

XoYoz)2(XeY)oZ
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Indeed, we have

Xo(Yoz) =

= U XoV=(XoY2)U(X6Z2)={XYZYZXZ2}
VeYoz

and

(XoY)oZ= |J ToZ=(XY0Z2)U(Y0Z)={XYZYZZ}.
TeEXQY

Therefore, (£, o) is a weak-associative hypergroupoid.

On the other hand, V(X,Y) € €2, X #Y,wehave X O Y =
={XY,Y}and Y © X = {XY,X} Thus, X OY # Y © X but
XOoYNY ®X #0. Moreover, V(X,Y, Z) € £3, we have

X) XoYoZ)=(XoY)oZu¥YyeoX)oz =
9. Proposition. Set H C £, H # 0. Then (H, ®) is a substructure
of (€,0) if and only if

V(X,Y) € H? we have XY € H.

Proof. 7<=" V(X,Y) € H?, wehave X OY = {XY,Y} C H, so
(H,®) is a substructure.

"==" Suppose that (H,®) is a substructure of (£,®). Then
we have

V(X,Y)€ H%, XY € {XY,Y}=XOYCH =

10. Corollary. All the conditional events A/B are substructures
of (€,0).

11. Theorem. A substructure (H,®) of (€,0®) is a hypergroup if
and only if H = {X}, where X € £.
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Proof. ”==" Let (H,®) be a hypergroup. Then (H,®) is a
quasi-hypergroup, so V(4,B) € H? 3X € H, 3Y € H such
that Be X © A= {XA, A} and A € Y ® B = {YB, B}. Since
B € {XA, A} it follows B C A and since A € {Y B, B} it follows
A C B. Therefore A = B and so H consists of an only one element.

"<="VX €& wehave XOX = {X} C {X},s0 ({X},0)isa
quasi~hypergroup. Moreover, (X©X)0X = X0 (X0X) = {X},
so ({X},®) is a hypergroup. [

12. Definition. A weak associative hypergroupoid (H, o) is called

(1) left directed if ¥V (z,y,2) € H?, zo(yoz) C (zoy)oz;
(ii) right directed if V (z,y,z) € H3, zo(yoz) 2 (zoy)oz;
(iii) directed if it is right and left directed.

The class of left directed (respectively, right directed) weak
associative hypergroupoids is denoted by LHD (respectively, by
RDH).

Let (H, o) be a hypergroupoid.

If n € IN* and (21,22, ...,2,) € H™, then we define the set
H(z1, 22, ..., T,) of all hyperproducts generated by (1, z2, ..., ) as
follows:

H(z1) = {z1}

and for n > 1, H(zy, 22, ..., Z,) is the set of all hyperproducts P =
= Py o P, where P, € H(z1,2,...,z1) and P> € H(Tht1, -, Tn),
where h € {1,2,...,n — 1}.

Let (H, o) be a hypergroupoid.

Let n € IN* and (21,23, ...,2,) € H™. The right hypeproduct
p(x1, 2, ..., x,) generated by (z1, T2, ..., T,) is defined as follows:

{z:1}, if n=1

X1, T2, .0y Tp) = )
plar, T2 ) {zlop(:@,..‘,mn), if n>1.
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Similarly, the left hyperproduct A(z1, 2, ...,x,) generated by
(1,22, ..., Tn) is defined as follows:

{IL’]}, if n=1

A1y ooy Tpo1)0Ly, if n>1.

Az, T2, .oy Tp) = {

13. Theorem. Let (H,0) € RDH. Then, for any n € IN¥,
H(z1, z2, ..., Tn) 1S a finite lattice, with respect to the inclusion.
Particularly, (H,o) is a feebly associative hypergroupoid.

Proof. We prove this by induction on n. By (%) it follows that the
theorem is true for n < 3.
Suppose the statement true for any n < h, where h > 3.
Then Vk € N, 1 <t < h, we have

@1, .oy Thy Thy1) = A1, ooy Tn) © Ty €
C (A(@1, -y 22) © AM(Ztg1, oy Th)) © Thy1) C
C M1,y ey 1) © (A(Z441, -y Th) © Thyy) =
= Az, ..., ) © M(@e41, -, Thi1) C P o Py,
- VP, € H(zy, ..., xt), VP2 € H(Z441, -y That)-
Since A(z1, ..., Th) 0 Thy1 € Proxpyr, VP € H(zy, ..., Tp) it follows

that A(z1, ..., Znr41) is the minimum of H(zy, ..., Zp41). Similarly, it
follows that p(z1, ..., Zp4+1) is the maximum. u

14. Corollary. (£,0) is a feebly associative hypergroupoid. More-
over, Vn € IN*, V(El,Eg,...,En) € gn} H(El,Ez,...,En) s a ﬁ-
nite lattice with the minimum A(Ey, Es, ..., E,,) and the mazimum
p(El, Ez, ceny En)

By induction, it follows the following

15. Theorem. Vn € IN*, V(Ey, E», ..., E,) € £", we have

() M(Ey, B, ..., Ey) = {ﬁ E, ic {1,2,...,n}};

s=1



290 PIERGIULIO CORSINI and VIOLETA LEOREANU

n—1
(i) p(Er, Es, ..., Ep) = {H F,E,, where F, € {E,,Q}} ;

p=1

(iii) VP € H(Es, B, .., E,), min P = [[ E; and max P = E,,.

s=1

16. Proposition. Let K; and K, be two subhypergroupoids of
(€,®). Then also K1 ® K, is a subhypergroupoid.

Proof. We have K1 K; C K, and Ky,K; C K,, whence

(K10 K2)(K1 0 K,) =
= (K1K2 U Kg)(K]KQ U Kg) Q K1K2 UK2 = Kl @ Kz.

Therefore, K; ® K5 is a subhypergroupoid. n

17. Proposition. For Vn € IN*, V(Ey, Es, ..., E,) € E™, every
P € H(E, Es, ..., E,) is a subhypergroupoid of (€, ®).

Proof. We prove by induction. For n = 1, the statement is clearly
true.

Let us suppose the statement true for n < k£ and we shall
verify it for n = k + 1. Indeed, VP € H(Es,FEs,.., Ery1),
3Is € {1,2,...,k}, 3P, € H(E\,...,E5), 3P € H(Esy1, -, Exy1)
such that P = P, ® P,. By the above proposition it follows that P
is a subhypergroupoid. ]

Now, let £ be an algebra of events.
18. Definition. For any (E}, E;) € £2, we define
E\OE; = {E\E,, E\Ey, Es}.

The hypergroupoid (£,0) is called the hypergroupoid of the atoms
of conditional events.
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19. Theorem. (£,0) is a weak associative and a weak commuta-
tive hypergroupoid.

Proof. 1) For any (E}, Es, E3) € £3, we have:

(E10E,)0E;= |J FOE;=
FeEy0OF>

= E1E2DE3 U—E—2DE3 UFIEQDES =
= {E\E2E3, E\E2Es, E3, EsEs, By Es BBy E3, E1 By E3} and

EID(E2DE3): U EIDKZ

KeFE,OE3
= E1 DE2E3 UE1 DE;; UE1 DFZE;; =

= {E1E2E3)E2E37FlE2E37E1_E37E37-E.1F37E1.E2E37F2E37E1F27E3}7
whence (Ey O E,)OE;NE,O(E,0F;)#0

2) For any (Br, B») € 82_,_we have: Ey OF, = {E,, F,E,, E,}
and Eg O E1 = {ElEQ, E2E1, E]}, whence E] O E2 N E2 0 El # 0--
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